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Preface

This book is a study of the trading mechanisms in financial markets: the
institutions, the economic principles underlying the institutions, and sta-
tistical models for analyzing the data they generate. The book is aimed
at graduate and advanced undergraduate students in financial economics
and practitioners who design or use order management systems. Most
of the book presupposes only a basic familiarity with economics and
statistics.

I began writing this book because I perceived a need for treatment of
empirical market microstructure that was unified, authoritative, and com-
prehensive. The need still exists, and perhaps someday when the field has
reached a point of perfection and stasis such a book will be written. In the
meantime I simply endeavor to identify and illuminate some themes that
appear, for the moment at least, to be defining the field’s arc of progress.

Three of these themes are especially prominent. The first is the institu-
tion that has come to dominate many of our most important markets—the
(electronic) limit order book. Much of the material here can be perceived
as an attempt to understand this mechanism. The second theme is asym-
metric information, an economic term that refers to the varying quality
of the information that traders bring to the market. It often establishes a
motive for trade by some individuals, but also frequently leads to costs
borne by a larger number. The third theme is linear time-series ana-
lysis, a set of statistical tools that have proven to be robust and useful
not simply in describing security market data but also in characterizing
the underlying economic structure.

Although the institutional, economic, and statistical content of the
book can be read separately and selectively, there is a natural ordering to
these perspectives. The features of real-world trading mechanisms moti-
vate almost everything else, so an early chapter provides an accessible
summary that is largely self-contained. Once this framework has been
established, the economic arguments that follow will seem more focused.
The statistical time-series models are then brought in to support, refute,
or calibrate the economic analyses.

The discussion of time-series analysis here is not as deep as a text-
book focused solely on the subject, but it is more substantial than
an applied field book would normally attempt. I weave through the
book coherent and self-contained explanations of the time-series basics.
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This is not done simply to save the reader the trouble of reaching for one
of the texts. Coverage, sequencing, and balance in most statistics texts
are driven (implicitly at least) by the nature of the data to be modeled. It
is a fact that most applications and illustrations in the extant literature
of time-series econometrics are drawn from macroeconomics. A theo-
rem is a theorem, of course, irrespective of the sampling frequency. But
microstructure data and models are distinctive. It is my hope that seeing
time-series analysis organized from a microstructure perspective will help
readers apply it to microstructure problems.

Although not presently affiliated, I have over the years served as paid or
unpaid consultant or advisor to the New York Stock Exchange, NASDAQ,
the Securities and Exchange Commission, and ITG. Except for a brief
youthful adventure as a day trader, I lay no claim to trading experience.

One of the earliest comprehensive analyses of U.S. equity markets was
the U.S. Securities and Exchange Commission Special Study of Securities
Markets (1963). Irwin Friend was a consultant to that study and later,
among many other things, my dissertation advisor. His supervision was
an ongoing lesson in how to approach data with a balance of imagination
and skepticism.

All students of market microstructure owe a large debt to the practition-
ers, who over the years have shared data, patiently described the workings
of their markets, and helped us define the important and relevant prob-
lems. Jim Cochrane (then of the New York Stock Exchange) opened the
door of the exchange to academics, correctly foreseeing that both groups
would gain enormously. His efforts have had an enduring positive effect
on the research culture of the field.

Other practitioners and regulators who have helped bring us to where
we are today include Robert Colby, Michael Edleson, Robert Fersten-
berg, Dean Furbush, Frank Hatheway, Rick Ketchum, Ray Killian, Martha
Kramer, Tim McCormick, Annette Nazareth, Richard Olsen, Jim Shapiro,
James Sinclair, George Sofianos, and David Whitcomb. To these individ-
uals I offer my thanks in lieu of citations.

A partial list of academic researchers who have shaped my thinking
and this book would include Yakov Amihud, Bruno Biais, Ian Domowitz,
David Easley, Rob Engle, Larry Glosten, Yasushi Hamao, Larry Harris, Tom
Ho, Charles Jones, A. S. (Pete) Kyle, Bruce Lehmann, Andrew Lo, Francis
Longstaff, Richard Lyons, Ananth Madhavan, Maureen O’Hara, Chris-
tine Parlour, Lasse Pedersen, Mark Ready, Gideon Saar, Robert Schwartz,
Duane Seppi, Erik Sirri, Matt Spiegel, Chester Spatt, Hans Stoll, Avanid-
har (Subra) Subramanyam, S. (Vish) Viswanathan, Jiang Wang, Ingrid
Werner, and many others. For encouragement and editorial assistance,
I am grateful to Kim Hoag, Catherine Rae, and Terry Vaughn.

I am grateful to the Stern School of New York University for sabbat-
ical support that sustained this work, and to Kenneth G. Langone, who
endowed the professorship at Stern that I currently hold. The Business
School of Columbia University graciously hosted me as a visitor during
the very pleasant year in which this book was completed.

For their suffusion of curiosity, creativity and ebullience, I thank my
daughters, Ariane and Siena Hasbrouck.
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11
Introduction

1.1 Overview

Market microstructure is the study of the trading mechanisms used for
financial securities. There is no “microstructure manifesto,” and historical
antecedents to the field can probably be found going back to the begin-
ning of written language, but at some point, the field acquired a distinct
identity. As good a starting point as any is the coinage of the term market
microstructure in the paper of the same title by Garman (1976):

We depart from the usual approaches of the theory of exchange
by (1) making the assumption of asynchronous, temporally dis-
crete market activities on the part of market agents and (2) adopt-
ing a viewpoint which treats the temporal microstructure, i.e.,
moment-to-moment aggregate exchange behavior, as an important
descriptive aspect of such markets. (p. 257)

Microstructure analyses typically touch on one or more of the following

aspects of trade.

1.1.1 Sources of Value and Reasons for Trade

We generally assume that the security value comprises private and com-

mon components. Private values are idiosyncratic to the agent and are

usually known by the agent when the trading strategy is decided. Com-

mon values are the same for everyone in the market and are often known

or realized only after trade has occurred. In security markets, the common

value component reflects the cash flows from the security, as summarized

3
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in the present value of the flows or the security’s resale value. Private value

components arise from differences in investment horizon, risk exposure,

endowments, tax situations, and so on. Generally, common value effects

dominate private value effects. A necessary condition for gains from trade

within a set of agents is contingent on some sort of differentiation. In

modeling, this is often introduced as heterogeneous private values.

1.1.2 Mechanisms in Economic Settings

Microstructure analyses are usually very specific about the mechanism or

protocol used to accomplish trade. One common and important mecha-

nism is the continuous limit order market. The full range, though, includes

search, bargaining, auctions, dealer markets, and a variety of derivative

markets. These mechanisms may operate in parallel: Many markets are

hybrids.

1.1.3 Multiple Characterizations of Prices

The market-clearing price, at least at it arises in usual Walrasian taton-

nement, rarely appears in microstructure analyses. At a single instant

there may be many prices, depending on direction (buying or selling),

the speed with which the trade must be accomplished, the agent’s iden-

tity or other attribute, and the agent’s relationship to the counterparty (as

well as, of course, quantity). Some prices (like bids and offers) may be

hypothetical and prospective.

1.2 Liquidity

Security markets are sometimes characterized by their liquidity. Precise

definitions only exist in the contexts of particular models, but the qualities

associated with the word are sufficiently widely accepted and understood

that the term is useful in practical and academic discourse.

Liquidity impounds the usual economic concept of elasticity. In a liq-

uid market, a small shift in demand or supply does not result in a large

price change. Liquidity also refers to the cost of trading, something dis-

tinct from the price of the security being bought or sold. Liquid markets

have low trading costs. Finally, liquidity has dynamic attributes. In a liq-

uid market, accomplishing a purchase or sale over a short horizon does

not cost appreciably more than spreading the trades over a longer interval.

Liquidity is sometimes defined as “depth, breadth, and resiliency.” In

a deep market if we look a little above the current market price, there is

a large incremental quantity available for sale. Below the current price,

there is a large incremental quantity that is sought by one or more buyers.

A broad market has many participants, none of whom is presumed to
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exert significant market power. In a resilient market, the price effects that

are associated with the trading process (as opposed to the fundamental

valuations) are small and die out quickly.

It is sometimes useful to characterize agents as suppliers or demanders

of liquidity. Liquidity supply has traditionally been associated with the

financial services industry, that is, the brokers, dealers, and other inter-

mediaries that are sometimes called the sell side of the market. Liquidity

demanders in this view are the customers, the individual and institu-

tional investors characterized by trading needs (and sometimes called the

buy side).

From a narrower perspective, liquidity supply and demand differenti-

ates agents who are available to trade or offer the option to trade, and those

who spontaneously decide to trade. Thus, liquidity suppliers are passive,

and demanders are active. In any particular trade, the active side is the

party who seals the deal by accepting the terms offered by the passive

side. In other words, the passive side “makes” the market and the active

side “takes.”

With the rise of markets that are widely, directly, and electroni-

cally accessible, the role of liquidity demander or supplier (in the sense

of the preceding paragraph) is a strategic choice that can be quickly

reversed. The alignment of liquidity demand and supply with particu-

lar institutions, therefore, is of diminished relevance in many modern

markets.

The liquidity externality is a network externality. The attributes of

liquidity just discussed are generally enhanced, and individual agents

can trade at lower cost, when the number of participants increases. This

force favors market consolidation, the concentration of trading activity

in a single mechanism or venue. Differences in market participants (e.g.,

retail versus institutional investors), however, and innovations by market

designers militate in favor of market segmentation (in this context, usually

called fragmentation).

The number of participants in a security market obviously depends on

features of the security, in addition to the trading mechanism. If the aggre-

gate value of the underlying assets is high; if value-relevant information is

comprehensive, uniform, and credible; or if the security is a component

of an important index, there will be high interest in trading the security.

Ultimately, of course, these qualities are determined endogenously with

the market mechanism. But it is common, when emphasizing the exoge-

nous aspects of these attributes to describe a security as being liquid or

illiquid.

The sources and origins of liquidity are generally what this book and

the field are about. They defy simplistic generalizations, but I have found

one expression to be particularly thought-provoking: “Liquidity is cre-

ated through a give and take process in which multiple counterparties

selectively reveal information in exchange for information ultimately
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leading to a trade.” The words are taken from the offering materials for

the ICor Brokerage (an electronic swaps trading platform). It is a practical

sentiment that resonates throughout much of what follows.

1.3 Transparency

Transparency is a market attribute that refers to how much information

market participants (and potential participants) possess about the trading

process. Electronic markets that communicate in real time the bids and

offers of buyers and sellers and the prices of executed trades are consid-

ered highly transparent. Dealer markets, on the other hand, often have no

publicly visible bids or offers, nor any trade reporting, and are therefore

usually considered opaque.

1.4 Econometric Issues

Microstructure data are distinctive. Most microstructure series consist of

discrete events randomly arranged in continuous time. Within the time-

series taxonomy, they are formally classified as point processes. Point

process characterizations are becomingly increasingly important, but for

many purposes it suffices to treat observations as continuous variables

realized at regular discrete times.

Microstructure data are often well ordered. The sequence of observa-

tions in the data set closely corresponds to the sequence in which the eco-

nomic events actually happened. In contrast, most macroeconomic data

are time-aggregated. This gives rise to simultaneity and uncertainty about

the directions of causal effects. The fine temporal resolution, sometimes

described as ultra-high frequency, often supports stronger conclusions

about causality (at least in the post hoc ergo propter hoc sense).

Microstructure data samples are typically large in the sense that by

most economic standards observations are exceedingly plentiful (10,000

would not be considered unusual). One would not ordinarily question the

validity of asymptotic statistical approximations in samples of this size. It

is worth emphasizing, though, that the usual asymptotic results apply to

correctly specified models, and given the complexity of trading processes,

some degree of misspecification is almost inevitable. Furthermore, despite

the number of observations, the data samples are often small in terms of

calendar span (on the order of days or at best months).

Microstructure data samples are new (we don’t have long-term his-

torical data for most markets). The samples may also be characterized as

old, though, because market institutions are changing so rapidly that even

samples a few years previous may be seriously out of date.
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1.5 The Questions

Here is a partial list of significant outstanding questions in market
microstructure:

• What are optimal trading strategies for typical trading problems?
• Exactly how is information impounded in prices?
• How do we enhance the information aggregation process?
• How do we avoid market failures?
• What sort of trading arrangements maximize efficiency?
• What is the trade-off between “fairness” and efficiency?
• How is market structure related to the valuation of securities?
• What can market/trading data tell us about the informational

environment of the firm?
• What can market/trading data tell us about long-term risk?

Although they might have been worded differently, most of these prob-

lems have been outstanding as long as the field has been in existence.

1.6 Readings

This book draws on material from economic theory, econometrics and

statistics, and descriptions of existing market institutions. Harris (2003)

is a broad treatment of economic theory and trading institutions at the

advanced MBA level. O’Hara (1995) is the standard reference for the eco-

nomic theory of market microstructure. Brunnermeier (2001) surveys

information and price formation in securities markets, treating micro-

structure in a broader economic context. Lyons (2001) discusses the

market microstructure of the foreign exchange market, providing a use-

ful alternative to the present treatment, which is based more on equity

markets. Survey articles include Hasbrouck (1996a), Madhavan (2000),

and Biais, Glosten, and Spatt (2005). Amihud, Mendelson, and Pedersen

(2005) survey the rapidly growing field that links microstructure and asset

pricing. Shepard (2005) is a useful collection of key readings in stochastic

volatility. This research increasingly relies on high-frequency data and

therefore more deeply involves microstructure issues.

Some characteristics of security price dynamics are best discussed in

context of the larger environment in which the security market operates.

Cochrane (2005) is a comprehensive and highly comprehensible synthesis

of the economics of asset pricing. Related background readings on finan-

cial economics include Ingersoll (1987), Huang and Litzenberger (1998),

and Duffie (2001).

The empirical material draws heavily on the econometrics of time-

series analysis. Hamilton (1994) is the key reference here, and the present

discussion often refers the reader to Hamilton for greater detail. For other
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econometric techniques (in particular, duration and limited dependent

variable models), Greene (2002) is particularly useful. Alexander (2001),

Gourieroux and Jasiak (2001) and Tsay (2002) discuss financial econo-

metrics; Dacorogna et al. (2001) focus on high-frequency data. The econo-

metric coverage in these excellent books partially overlaps with the

present text.

It is difficult to cite authoritative sources covering institutional details

of the specific markets. Markets that are recently organized or over-

hauled, particularly those that feature standard mechanisms, are usually

well documented. The trading procedures of the Euronext markets are

in this respect exemplary (Euronext (2003)). Hybrid markets that have

evolved over extended periods of change and adaptation are much less

straightforward. The practicalities of current trading on the New York

Stock Exchange, for example, would be extremely difficult to deduce from

the codified Constitution and Rules (New York Stock Exchange (2005)).

Comerton-Forde and Rydge (2004) provide useful summaries of trading

procedures in many securities markets and countries.

1.7 Supplements to the Book

My Web site (http://www.stern.nyu.edu/∼jhasbrou) contains a number

of links and programs that may help the reader follow, apply, emend, or

extend the material in the book. Most of the mathematical derivations in

the book were generated using Mathematica. The Mathematica notebooks

are available on the site. Using Mathematica does not by any means guar-

antee the correctness of a derivation, but it does lessen the likelihood of

a simple algebraic mistake. A Mathematica notebook documents a calcu-

lation in standard form. It facilitates the modification and extension of an

argument, visualization, and (when necessary) the transition to numeri-

cal implementation. The solutions to most of the exercises are contained

in the notebooks. The site has several SAS programs that illustrate the

techniques.

http://www.stern.nyu.edu/~jhasbrou


22
Trading Mechanisms

This chapter surveys typical trading arrangements and establishes an

institutional context for the statistical and economic models to follow.

This book focuses on continuous security markets. Whatever their original

mechanisms, many and the most visible of these markets presently feature

an electronic limit order book. The limit order market, then, is the starting

point for the survey. This is probably the most important mechanism,

but there are usually at least several alternative paths to accomplishing a

trade for any given security. Most security markets are actually hybrids,

involving dealers, clearings, one- and two-sided auctions, and bilateral

bargaining, all of which are also discussed. The survey emphasizes general

features and is not specific to particular securities or a particular country.

The appendix to the book contains a supplementary overview of U.S.

equity markets.

Whatever the mechanism, the event that we label a trade, execution,

or fill (of an order) actually only constitutes a preliminary agreement as

to terms. This agreement sets in motion the clearing and settlement pro-

cedures that will ultimately result in the transfer of securities and funds.

These processes are usually automatic and routine, and the traders sel-

dom need to concern themselves with the details. It is important, though,

that they require some sort of preexisting relationship, possibly one that is

indirect and via intermediaries, between the parties. Establishing a broker-

age account or clearing arrangement is neither costless nor instantaneous

and may therefore create a short-run barrier to entry for a potential buyer

or seller not previously known to the market.

Trading often involves a broker. A broker may simply provide a con-

duit to the market but may also act as the customer’s agent. This is a more

9
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substantial role and may involve discretion about how to handle a cus-

tomer’s trading needs: when to trade, where to trade, what sort of orders

to use, and so on. The customer–broker agency relationship gives rise

to the usual problems of monitoring, contracting, and enforcement that

pervade many principal–agent relationships. The broker’s duty to the

customer is sometimes broadly characterized as “best execution,” but

precise definition of what this means has proven elusive (Macey and

O’Hara (1997)).

We now turn to the specific mechanisms.

2.1 Limit Order Markets

Most continuous security markets have at least one electronic limit order

book. A limit order is an order that specifies a direction, quantity, and

acceptable price, for example, “Buy 200 shares at $25.50 [per share],” or

“Sell 300 shares at $30.00.” In a limit order market, orders arrive randomly

in time. The price limit of a newly arrived order is compared to those of

orders already held in the system to ascertain if there is a match. For

example, if the buy and sell orders just described were to enter the system

(in any order), there would be no match: a price of $25.50 is not acceptable

to the seller; a price of $30.00 is not acceptable to the buyer. A subsequent

order to buy 100 shares at $32.00 could be matched, however, as there is

an overlap in the acceptable prices. If there is a match, the trade occurs

at the price set by the first order: An execution will take place (for 100

shares) at $30.

The set of unexecuted limit orders held by the system constitutes the

book. Because limit orders can be canceled or modified at any time, the

book is dynamic, and in active markets with automated order management

it can change extremely rapidly. These markets are usually transparent,

with the state of the book being widely visible to most actual and poten-

tial market participants. Short of actually trading, there is no better way

to get a feel for their mechanics than by viewing the INET book (currently

available at www.nasdaqtrader.com) for an actively traded stock (such as

Microsoft, ticker symbol MSFT). The extraordinary level of transparency

traders currently enjoy is a recent phenomenon. New York Stock Exchange

(NYSE) rules historically prohibited revelation of the book. In the 1990s,

this was relaxed to permit visibility of the book on the trading floor.

Off-floor visibility was not available until January 2002.1

A market might have multiple limit order books, each managed by a

different broker or other entity. Limit order books might also be used in

conjunction with other mechanisms. When all trading for a security occurs

through a single book, the market is said to be organized as a consolidated

limit order book (CLOB). A CLOB is used for actively traded stocks in

most Asian and European markets.

www.nasdaqtrader.com
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A mechanism’s priority rules govern the sequence in which orders

are executed. Price priority is basic. A limit order to buy priced at 100,

for example, will be executed before an order priced at 99. Time is usu-

ally the secondary priority. At a given price level, orders are executed

first-in, first-out. Although these priority rules may seem obvious and

sensible, it should be noted that they usually only determine the rel-

ative standing of orders within a given book. There is rarely system-

wide time priority across all books or other components of a hybrid

market.

A trader may desire that an order be executed “at the market,” that is,

at the best available price. If the order quantity is larger than the quantity

available at the single best price on book, the order will “walk the book,”

achieving partial executions at progressively worse prices until the order

is filled. This may lead to executions at prices far worse than the trader

thought possible at the time of submission. For example, at 10:47:26 on

January 29, 2001, the bid side of the book for IBM on the Island ECN

contained (in its entirety) bids at $112.50, $110.00, $108.00, and $2.63.

The last bid was presumably entered in error, but should it have been

executed, a seller would have obtained $2.63 for a share of IBM at a time

when its market price was in the vicinity of $113.2

A provision in the Euronext system illustrates how surprises of this

sort can be avoided. On Euronext, a market order is not allowed to walk

the book. It will only execute for (at most) the quantity posted at the best

available price. Anything remaining from the original quantity is con-

verted into a limit order at the execution price. For example, if a market

order to buy 1,000 shares arrives when the best offer is 200 shares at €100,

200 shares will be executed at €100, and the remaining 800 shares will be

added to the book as a buy limit order priced at €100. If a trader in fact

wants the order to walk the book, the order must be priced. Attaching a

price to the order forces the trader to consider the worst acceptable price.

INET requires that all orders be priced.

Markets often permit qualifications and/or variations on the basic limit

order. The time-in-force (TIF) attribute of an order specifies how long the

order is to be considered active. It is essentially a default cancellation time,

although it does not preclude the sender from canceling before the TIF is

reached. Although the precommitment associated with a TIF deprives the

sender of some flexibility, it avoids the communication delays and uncer-

tainties that sometimes arise with transmitted requests for cancellation.

An immediate-or-cancel (IOC) order never goes onto the book. If it cannot

be executed, it leaves no visible trace, and the sender is free to quickly

try another order (or another venue). An all-or-nothing (AON) order is

executed in its entirety or not at all. It avoids the possibility that a par-

tial fill (execution) will, when reported to other traders, move the market

price against the sender, leaving the remaining portion of the order to be

executed at a less favorable price.
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A trader seeking to buy or sell an amount that is large (relative to the

quantities typically posted to the book) is unlikely to feel comfortable dis-

playing the full extent of his or her interest. To make the situation more

attractive, many markets allow hidden and/or reserve orders. Hidden

orders are the simpler of the two. If an order designated as hidden cannot

be executed, it is added to the book but not made visible to other market

participants. The hidden order is available for execution against incoming

orders, the senders of which may be (happily) surprised by fills at prices

that are better than or quantities that are larger than what they might have

surmised based on what was visible. Hidden orders usually lose priority

to visible orders, a rule that encourages display.

Reserve (“iceberg”) orders are like hidden orders, but their invisibility

is only partial. Some display is required, and if the displayed quantity is

executed, it is refreshed from the reserve quantity. The procedure mimics

a human trader who might feed a large order to the market by splitting it

up into smaller quantities (Esser and Mönch (2005)).

In a limit order market, buyers and sellers interact directly, using

brokers mainly as conduits for their orders. The broker may also, how-

ever, provide credit, clearing services, information, and possibly analytics

designed to implement strategies more sophisticated than those asso-

ciated with the standard order types. The broker does not usually act as a

counterparty to the customer trade.

The data emanating from a limit order market are usually very accurate

and detailed. The real-time feeds allow traders to continuously ascertain

the status of the book and condition strategies on this information. For

the economist, limit order markets offer a record of agents’ interactions at

a level of detail that is rarely enjoyed in other settings. There are, never-

theless, some significant generic limitations. First, the sheer volume and

diverse attributes of the data pose computational challenges and make

parsimonious modeling very difficult. More importantly, though, the unit

of observation is typically the order, and it is rarely possible to map a

particular order to others submitted or canceled by the same trader. Mar-

ket participants can’t construct these maps either (except for their own

orders), so this does not preclude us from building models that might

plausibly reflect agents’ common-knowledge beliefs. It does, however,

constrain what we can discern about individual trading strategies.

2.2 Floor Markets

Consolidation of trading interest (actual and potential buyers and sell-

ers) is important because it enhances the likelihood that counterparties

will find each other. Before electronic markets allowed centralization of

trading to be accomplished virtually, consolidation could only take place

physically, on the floor of an exchange. In a floor market, the numerous and
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dispersed buyers and sellers are represented by a much smaller number of

brokers who negotiate and strike bilateral deals face to face. These brokers

are often called members, as the exchanges were historically organized as

cooperatives.

The members act either as agents, representing the customer orders to

others, or as principals, taking the other side of customer orders. The com-

bination of these two functions, though, suffers from a conflict of interest.

A broker who intends to act as a counterparty to his or her customer’s

order does not have an interest in vigorously representing the order to

others on the floor (who might offer a better a price). For this reason, dual

trading is either expressly forbidden or strongly regulated.

Despite behavior that may appear chaotic and noisy, floor trading is

usually an orderly process. Hand signals quickly convey the key features

of an order. Deceptive actions, such as bidding lower than another mem-

ber’s current bid (in an attempt to find a seller willing to trade at the

inferior price), are forbidden. Transaction prices are quickly reported and

publicly disseminated. Disputes and errors are resolved quickly.

In the nineteenth century, floor markets proliferated. In the twentieth

century, they consolidated. By the dawn of the twenty-first century, they

had largely evaporated.3 The largest markets that still rely primarily on

trading floors are the U.S. commodity futures markets: the Chicago Board

of Trade, the New York Mercantile Exchange, and Chicago Mercantile

Exchange (the Merc). The last is perhaps the easiest for an outsider to

comprehend, because its trading rules (available online) are particularly

straightforward and clear. The NYSE is sometimes described as a floor

market. This is indeed its heritage, but the label has become less accurate

as the Exchange has incorporated more electronic mechanisms.

From an empirical viewpoint, it is worth noting that the real-time data

stream emanating from floor trading in futures markets is meager relative

to what most electronic limit order markets provide. Futures tick data

generally only convey price changes. In a sequence of trades, only those

that establish new price levels are reported. Bids and offers can generally

be obtained only by inquiry. Transaction volumes are not reported.

As measured by the capital generation and allocation that they facili-

tated, and by their historical survival and persistence, the floor markets

achieved remarkable success. On the other hand, this success led to market

power and political influence that sometimes worked against customers

and regulators. In recent years, most floor-based trading has gone elec-

tronic. Like many paradigm shifts, the transition has been painful for the

old guard. Most exchanges have nevertheless navigated the changes and

survived, either by gradually automating or by building electronic markets

de novo.

One event in particular seems to have starkly illuminated the costs of

resisting the change. Through the mid-1990s, the market for futures based

on German government debt (Bund futures) was dominated by a contract
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that was floor-traded on the London International Financial Futures

Exchange (LIFFE). In 1997, the Deutsche Terminbörse (DTB, now Eurex)

began to aggressively market an electronically traded contract. Over the

course of the next year, trading shifted to the newcomer. The LIFFE

eventually moved trading to an electronic platform and shut down most

floor trading by the end of 1999. It did not, however, recapture significant

trading volume in the Bund contract (Maguire (1998) Codding (1999)).

Despite the rapid ascendancy of electronic systems, their limitations

should not be overlooked. Electronic consolidation has not rendered

face-to-face interactions irrelevant. Many of the same financial institu-

tions that rely heavily on electronic access to markets have also gone to

great lengths and expense to maintain the trading operations for their

diverse markets together on large, contiguous trading floors. This facili-

tates coordination when a deal involves multiple markets. The pricing

and offering of a corporate bond, for example, might well involve the

government bond, interest-rate swap, credit swap, and/or the interest rate

futures desks. Thus, while no longer necessary to realize (in a single mar-

ket) economies of scale, personal proximity may promote (across multiple

markets) economies of scope.

2.3 Dealers

2.3.1 Dealer Markets

A dealer is simply an intermediary who is willing to act as a counterparty

for the trades of his customers. A dealer, or, more commonly, a network of

geographically dispersed electronically linked dealers, may be the domi-

nant mechanism for trade. Some of the largest markets are dealer markets,

including foreign exchange (FX), corporate bond and swap markets.

A trade in a dealer market, such as the FX market, typically starts with

a customer calling a dealer. The dealer quotes bid and ask prices, where-

upon the customer may buy at the dealer’s ask, sell at the dealer’s bid,

or do nothing. This script presumes that the dealer and customer have a

preexisting relationship. This relationship plays a more significant role

(in addition to establishing the framework for clearing and settlement),

because the customer’s trading history and behavior may reveal his or her

unexpressed trading desires or information and may therefore affect the

terms of trade that the dealer offers.

The dealer–customer relationship involves reputations established and

sustained by repeated interactions. The dealer’s reputation is contingent

on his or her willingness to always quote a reasonable bid and ask, even

if the dealer would prefer not to trade in a particular direction. The

customer’s reputation is based on his or her frequent acceptance of the

dealer’s terms of trade. A customer who called the dealer repeatedly
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merely to check the price, never actually trading, would soon find the

dealer unresponsive to his or her inquiries.

In a limit order market, a buyer who judges the book’s best ask price

unreasonable may place his or her own bid (buy limit order). In most

dealer markets, this possibility does not exist. Dealers rarely act as an effec-

tive agent for customer limit orders. For example, prior to the Manning

rules (in the mid-1990s), a NASDAQ dealer holding a customer limit order

to buy was under no obligation to display the order, even when the cus-

tomer’s bid bettered those of all other dealers in the market (see appendix

section A.3).

A large customer may have relationships with many dealers. This forms

the basis for competition that mitigates the dealer’s bargaining power.

Small retail customers, however, often do not have such a pool and

therefore have little bargaining power.

Dealer markets are also usually characterized by low transparency. The

dealers provide quotes only in response to customer inquiries, and these

are not publicly visible. Publication of trade prices is unusual. Unlike

consolidated floor markets, dealer markets are fragmented.

For customer orders, a dealer acts as a counterparty (trading against

the order), and a broker acts as agent (representing the order on behalf of

the customer). These two functions are not necessarily conflicting: Both

broker and dealer will profit by successful execution of the customer’s

order. Often, though, the broker and dealer are working at cross-purposes.

An aggressive agent might survey more dealers and bargain harder to find

the customer a good price, one that leaves the executing dealer with only

a small profit. A lazy agent might simply take the first price quoted by the

first dealer. As in floor markets, this conflict of interest is most aggravated

when the broker and dealer are the same or affiliated entities.

In addition to dealer–customer interactions, interdealer trading is also

important. The incoming orders that a particular dealer sees are rarely

balanced (as to purchases and sales). There is usually an excess demand

or supply, and accommodating these customer needs may leave the dealer

with an undesired long or short position. In such cases, the dealer will

attempt to sell or buy in the interdealer market. One dealer may contact

another directly and nonanonymously, much as a customer might have

initially contacted him or her (except that the quantity would typically be

larger). Willingness to make a market and trade in these interactions is sus-

tained by reputation and reciprocity. The dealer who is being contacted

might soon need to reach out to balance his or her own position. Alter-

natively, a contact may be made indirectly and anonymously through a

interdealer broker. Finally, interdealer trade in the FX market is typically

conducted via a limit order book (such as EBS or Reuters). From the diver-

sity of these examples, it is clear that the interdealer market is defined by

its participants, not by the mechanism. Analyses of interdealer markets

include Reiss and Werner (1998) and Viswanathan and Wang (2004).
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Dealer markets are typically flexible. The fixed technology and infra-

structure costs are low. The main barrier to entry is access to a set of cus-

tomers. Dealing operations are easily scaled up or down. Certain terms of

trade and security characteristics may be set to accommodate customer

preferences. For example, the equity derivatives desk at a bank might sell

a customer a call option for which the underlying strike price, maturity,

and size differ from any other option the desk has ever bought or sold.

2.3.2 Dealers in Hybrid Markets

Dealers can make markets work where they might otherwise fail. Recall

that in a limit order market, customers trade directly with only a minimal

role for the broker or any other intermediary. Liquidity, in the sense of

the ability to trade immediately, is often described as customer-supplied

because it derives from the unexecuted customer orders in the book.

The absence of an intermediary helps keep trading costs low. On the

other hand, the customers’ interests are driven by their immediate trading

needs. They are not usually inclined to provide liquidity in an ongoing

and continuous fashion. This may impair the functioning of the market

because a trading venue’s reputation for always accommodating trades

contributes to its ability to attract order flow.

Limit order markets generally have difficulty with small stocks, securi-

ties for which trading interest is insufficient to sustain continuous trading.

In many cases, continuous trading may not be necessary. That is, market

participants may be satisfied with a call mechanism (described shortly)

that provides for trading only at several specified times of the day. Conti-

nuous trading, though, offers more flexibility in hedging and rebalanc-

ing portfolios. A dealer may make continuous trading possible when the

natural customer-supplied liquidity in the book would not suffice.

Ideally, dealers would arise endogenously, perhaps as customers who

gain familiarity with the market in the course of managing their own

trades and then perceive opportunities in more actively supplying bids

and offers. In actively traded securities, this may well be occurring. In low-

activity securities, though, the potential dealer’s costs of continuously

monitoring bids and offers may be too large to recover from the relatively

infrequent trades. In these instances, continuous liquidity requires that a

dealer be designated as such (by the market authority) and provided with

additional incentives. Perhaps the best-known designated dealer is the

NYSE specialist. The specialist has many roles and responsibilities, but

an important one is maintaining a two-sided market when there is nothing

on the limit order book and no one else on the floor bidding or offering.

Establishing the proper incentives for designated dealers, though, has

proven to be difficult. The issues involve measuring the liquidity that

the dealers provide, determining the beneficiaries of this liquidity, allo-

cating the costs, and balancing the rights of dealers against the public
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users of limit orders (who are usually the dealers’ direct competitors).

The Euronext equity markets have adopted a relatively straightforward

solution. Taking the position that a firm’s stockholders are the most direct

beneficiaries of continuous liquidity, a firm may contract with and directly

compensate an agent who agrees to post continuous bids and offers.

More typically, though, dealers are implicitly compensated in the form

of trading profits, generated within a complex structure of privileges and

obligations.

As a rough generalization, technology has weakened the competitive

position of dealers (as it has, arguably, the competitive position of interme-

diaries in many nonsecurity markets). Electronic order management sys-

tems, in particular, now enable customers to update and revise their limit

orders rapidly enough to respond to market conditions. They can quickly

supply liquidity when it is profitable to do so and quickly withdraw their

bids and offers when markets are volatile. The U.S. over-the-counter stock

market (NASDAQ), for example, has historically been considered a dealer

market. In recent years, though, trading activity has shifted onto limit

order markets, and the dealer presence is considerably diminished.

Dealers also serve a useful function in facilitating large (block) trades.

The block market (also called the upstairs market) is mainly institutional.

When an institution contacts a dealer to fill a large order, the dealer can act

as principal (taking the other side of the order and committing capital), try

to locate a counterparty for the full amount, work the order over time, or

some combination of these. The dealer’s advantage here thus lies in access

to capital, knowledge of potential counterparties, and expertise (or, nowa-

days, algorithmic systems) executing large orders over time. The rela-

tionship between the customer and dealer also expedites the trade. The

customer implicitly warrants that his or her institution is “uninformed,”

specifically, not seeking to exploit a short-term informational advantage,

such as prior knowledge of an earnings announcement (Seppi (1990)).

2.4 Auctions and Other Clearing Mechanisms

When there are multiple buyers and multiple sellers concentrated in one

venue at one time, trade need not be coordinated. Agents will contact each

other sequentially, striking bilateral bargains. Economically inefficient

outcomes, however, can easily arise.4 Another practical consideration is

that if the bargaining is conducted by brokers on behalf of customers,

and the trade prices are publicly reported, many customers will see their

trades executed at prices worse than the best price realized over the entire

set of trades. This is unlikely to promote confidence in the brokers or the

mechanism.

A single-price clearing avoids these problems. It is generally imple-

mented with a single-price double-sided auction. Supply and demand
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curves are constructed by ranking bids and offers. Prices, quantities,

and trader identities are usually determined by maximizing the feasible

trading volume.

The double-sided auction is widely used in securities markets. For

securities with low natural trading interest, most trade occurs using peri-

odic auctions (also called fixings). The Euronext markets, for example,

conduct auctions once or twice per day (depending on the level of inter-

est). Double-sided auctions are usually used to open continuous trading

sessions (Euronext, Tokyo Stock Exchange, NYSE, etc.). They are also fre-

quently used at the close of continuous trading sessions. Closing prices

are widely used as reference prices in valuing margin positions, valuing

mutual fund shares, determining the payoffs to cash-settled derivatives,

and (occasionally) determining terms of exchange in mergers. In these

situations a small change in the reference price can cause substantial gains

or losses in the derivative position. With so much at stake, it is not sur-

prising that many cases of market manipulation involve attempts to “mark

the close.”5

Although auctions may appear simple, seemingly minor details of

implementation can have profound effects. Klemperer (2004) notes that

“what really matters in auction design are the same issues that any indus-

try regulator would recognize as key concerns: discouraging collusive,

entry-deterring and predatory behavior” (p. 104). Although the context of

the statement is a discussion of single-side auctions, it is not a bad maxim

for the double-sided security variety.

Experience suggests that a particularly important aspect of design is the

deadline for order submission. As any casual observer of eBay activity can

attest, most bidding action occurs very shortly before the final deadline

(Roth and Ockenfels (2002)). Why bid early and give competitors a lengthy

interval in which to contemplate their next moves? To discourage wait-

ing until the last instant, the Euronext markets employ random stopping

times. Within a brief window (on the order of seconds), order acceptance

may be terminated at any point. This introduces uncertainty into the last-

instant strategy and so discourages its use.6 The deadline may also be

extended if the price at the scheduled clearing would constitute a large

movement from a preceding price (such as the previous day’s close).

To further minimize the noise in price determination, earlier deadlines

may be imposed on large or destabilizing orders. (An order is destabilizing

if it is in the same direction as the change in the likely clearing price, a

buy order, for example, if the other orders cumulated to that time imply a

clearing price above the previous close.) To prevent the strategy of entering

orders on both sides of the market and then canceling one at the last

moment, cancellations of stabilizing orders are usually subject to the same

early deadline as the submission of destabilizing orders.

Although most auctions in secondary (post–initial offering) markets

are double-sided, single-sided auctions are extensively used in primary
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(initial offering) markets. These include the U.S. Treasury debt markets,

and most U.S. municipal bond offerings. Auctions are also used, though

not as often, for initial issues of equity.

Single-sided auctions can sometimes arise as an ancillary mechanism

in a market where most trading takes place by other means. In floor tra-

ding on the NYSE, for example, one agent, the specialist, acts as agent for

customer market orders (among other responsibilities). In this role, the

specialist may auction a market order by indicating quantity and direction

(e.g., “2,000 shares to buy”) and letting other brokers compete to offer the

best price.

The economic literature on auctions is extensive. Useful texts include

(in order of ascending complexity) Klemperer (2004), Krishna (2002), and

Milgrom (2004). Friedman and Rust (1993) is an excellent collection of

articles focusing on double auctions.

2.5 Bargaining

Some security trading interactions closely resemble the usual customer/

vendor situation in goods markets wherein a shopkeeper fixes a posted

price and the passing customer can purchase (or not). Although the posted

price is almost certain to be constrained by larger forces of competition

(the customer’s access to alternative suppliers or substitute goods), the

interaction is essentially, in the microscopic view, a bargaining game. In

securities trading, the retail customer and her dealer may be in a similar

situation. A retail customer in the United States who wishes to buy or

sell a municipal bond will contact a broker and solicit prices at which

the broker (acting in a capacity as dealer) would buy or sell. The broker

states the prices, and the customer can trade (or not). Faced with unfavor-

able terms an institutional trader might search the prices of other dealers

with whom they have relationships, but individuals rarely have accounts

with more than one broker. Recent work on the U.S. municipal securities

markets highlights the role of bargaining power in a dealer market (Green,

Hollifield, and Schuerhoff (2005)).

In economic terms, this is an ultimatum game. In the standard full-

information ultimatum game, one agent (the allocator) proposes a division

of the total payoff, and the other agent (the recipient) either accepts or

rejects the proposal. If the recipient accepts, both players receive the pro-

posed payoff; if the recipient rejects, both players receive zero. The main

feature of this literature is the divergence between the predicted rational

outcomes and those that arise in experiments (and in most individu-

als’ experiences). The rational recipient accepts any proposal that gives

any nonzero payoff, and knowing this, the rational allocator keeps for

him- or herself almost all of the total payoff. In practice, recipients often
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reject proposals perceived as unfair, and this forces allocators to disci-

pline their greed. The economic literature on these games in voluminous.

Thaler (1988) and Camerer and Thaler (1995) are good introductions. Roth

(1995) surveys experimental evidence.

When the total payoff is known to the allocator but not the recipient, the

latter cannot so readily assess the fairness of a proposal. This uncertainty

favors the allocator, in this case, the dealer (see, for example, Kagel, Kim,

and Moser 1996). Perhaps the strongest signal about the total payoff in the

dealer–customer interaction is the record of prices of recent trades. For

this reason, U.S. regulators have sought to promote trade price publication

through a variety of initiatives.7

Another standard bargaining situation arises in Liquidnet, a trading

system for U.S. institutional investors. Institutions anonymously enter

the quantities and directions (buy or sell) of desired trades. The Liquidnet

system searches over all the entries. When it finds a match, it contacts the

buyer and seller and places them in a virtual meeting room, where they

can (anonymously) bargain over price. The bargaining protocol essentially

allows the recipient to reject the allocator’s initial proposal and suggest

another, and so on, indefinitely.

When the situation allows for repeated counter proposals, the

Rubinstein (1982) theorem comes into play. Briefly, the theorem sets out

some reasonable sufficient conditions (most important, time preference)

under which the full-information game will immediately converge to the

even-split outcome. The intuition is that both sides can clearly see the

consequences of a strategy (which might at first seem reasonable) of mak-

ing proposals that are far from an even split and marginally improving

them (“I’ll sell at $1,000”; “I bid one cent”; “I’m offering at $999.99”;

“I bid two cents,” etc.). This will simply dissipate value through delay.

In a Liquidnet negotiation, both parties know bid and ask prices from

other markets (although these will typically be for smaller quantities).

Usually the midpoint of the best intermarket bid and offer is proposed

and accepted.

2.6 Crossing Networks and Derivative Pricing

In a crossing, the buyer and seller are paired (usually anonymously) for an

agreed-on quantity. The trade is priced by reference to a price determined

in and derived from some other market. Thus, though almost all of the

devices considered prior to this can in principle serve as the sole mar-

ket mechanism, a crossing network, in its reliance on a price determined

elsewhere, is inherently a hybrid device.

In ITG’s POSIT system, for example, potential buyers and sellers enter

demands (quantities to buy or sell). These are not made visible. At the

time of the crossing, the system matches buyers and sellers (if possible).
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The execution price of the trade is the midpoint of best bid and offer in

the listing market. Thirteen crossings are scheduled each day. The exact

time of a cross is partially random, to discourage either side from entering

a surreptitious bid or offer to obtain a more favorable price.

Instinet (an institutional brokerage) runs a cross where the match price

is the average price of all trades on the day, weighted by volume. Buyers

and sellers enter desired quantities and are paired off in the morning, prior

to the start of regular trading. After the market closes in the afternoon, the

value-weighted average price (VWAP) is computed, and the trades are

executed.

In both the POSIT and Instinet VWAP crossings, quantities are matched

prior to the determination of the price. A crossing can also use a price

determined prior to the quantity matching. The Instinet closing cross

allows institutions to submit, after the regular market close, orders that

will be matched (if possible) and executed at the closing price. Instinet

also conducts crossings in foreign exchange.

Crossings must be designed to discourage manipulation (if the price is

determined after the quantity match) and predatory trading (if the price is

determined prior to the quantity match). A strategy of the latter sort might

involve submitting orders in response to news announcements made after

the determination of the closing price, in the hopes of picking off unwary

counterparties. In view of an after-hours announcement of a product

recall, for example, the day’s closing price is likely to be high relative to

the following open. A sell order might trade against someone who hadn’t

heard the news and canceled their buy order. To prevent this, Instinet

cancels crosses when there are news announcements and monitors

participants, expelling those whose strategies appear to be news-driven.

Another form of derivative pricing is price matching. This generally

refers to a dealer’s strategy of precommitting to execute orders at the

best visible bid or offer (posted by others). The precommitment is made

selectively, to brokers representing customers, typically retail customers,

whose orders are likely to be profitable for the dealer.

The pricing in crossing markets is sometimes described as derivative,

a usage that sometimes leads to confusion. In finance, a derivative secu-

rity has a value or payoff that is a function of some other security (the

underlying). A derivative mechanism is a device for executing trades in

a security based on a price determined for the same security in another

market.

2.7 Concluding Remarks

The complexity of institutional arrangements and the rapid pace of their

evolution force the modeler to exercise judgment in deciding which
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features are important to the task at hand. In practice, market microstruc-

ture analyses deal with the details at varying levels of abstraction.

Least demanding of fidelity to institutional details are the descriptive

statistical analyses of high-frequency trade price behavior, which can be

viewed as atheoretic forecasting models. At a higher level of complexity,

we attempt to identify passive and active sides of trades (the bid and

offer quotes and the traders who hit or lift them). For these purposes,

we might view, for example, the bids of dealers and the bids representing

customer limit orders as equivalent. These models often have a fair degree

of economic content yet remain sufficiently tractable to estimate.

In reality, though, the agent in a limit order market is intrinsically

neither active nor passive but makes a choice conditional on the state of

the book. Embedding this choice in a dynamic structural model of price

evolution has proven to be extremely difficult. For the most part, current

models make and test predictions about the determinants of order choice.

Studies addressing regulatory issues obviously require detailed know-

ledge of the rules in question but also need an appreciation for how these

rules are applied and interpreted in practice. Often a particular rule or fea-

ture is too difficult to model structurally, though, and we attempt to draw

welfare conclusions based on comparisons of relatively crude descriptive

statistics before and after the change. These conclusions must frequently

be qualified due to confounding events and agents’ responses to the rule

changes. Although it is relatively easy to assess direct trading costs (e.g.,

brokerage commissions), for example, it is virtually impossible to mea-

sure indirect costs (e.g., the cost of monitoring the status of a limit order)

or the cost/benefits of degraded/enhanced risk sharing.



33
The Roll Model of Trade Prices

3.1 Overview

In taking a microstructure perspective on security price dynamics, we

shift focus from monthly or daily characteristics down to the features that

come into play at horizons of a minute or second. Figure 3.1 illustrates

this transition. For a randomly chosen stock (Premcor, symbol PCO, sub-

sequently acquired), the figure depicts in panel A the sequence of actual

trade prices over October 2003, then in panel B the prices on a particu-

lar day (October 30), and finally in panel C a particular hour on that day

(11 A.M. to noon). In panel C, trade prices are augmented by plots of bid

and ask quotes.

The most detailed figure hints at the extent of microstructure complex-

ities. The three prices (bid, ask, and trade) differ. None are continuous

(they all have jumps), but the bid and ask are continual in the sense

that they always have values. Trades are more discrete, occurring as a

sequence of well-defined points. The three prices tend to move together

but certainly not in lockstep. The bid and ask sometimes change and then

quickly revert. Trades usually occur at the posted bid and offer prices (but

not always). And so on.

I do not attempt at the outset to build a model that can explain or

even describe all of these features. Instead, I begin with a model of high-

frequency trade prices originally suggested by Roll (1984). It is an excellent

starting point for several reasons. It illustrates a dichotomy fundamental to

many microstructure models—the distinction between price components

due to fundamental security value and those attributable to the market

organization and trading process. The former arise from information

23
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Figure 3.1. PCO price record at different time scales.

about future security cash flows and are long-lasting, whereas the lat-

ter are transient. The model possesses sensible economic and statistical

representations, and it is easy to go back and forth between them. The

model is useful, offering descriptions and interpretations that are, in many

situations, quite satisfactory.

This chapter develops the Roll model by first presenting the random-

walk model, which describes the evolution of the fundamental security

value. The discussion then turns to bid and ask quotes, order arrivals, and

the resulting transaction price process.

3.2 The Random-Walk Model of Security Prices

Before financial economists began to concentrate on the trading process,

the standard statistical model for a security price was the random walk.
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The random-walk model is no longer considered to be a complete and

valid description of short-term price dynamics, but it nevertheless retains

an important role as a model for the fundamental security value. Further-

more, some of the lessons learned from early statistical tests of the random-

walk hypothesis have ongoing relevance in modeling market data.

Let pt denote the transaction price at time t, where t indexes regular

points of real (“calendar” or “wall-clock”) time, for example, end-of-day,

end-of-hour, and so on. Because it is unlikely that trades occur exactly at

these times, we will approximate these observations by using the prices

of the last (most recent) trade, for example, the day’s closing price. The

random-walk model (with drift) is:

pt = pt−1 + µ + ut , (3.1)

where the ut , t = 0, . . . , are independently and identically distributed ran-

dom variables. Intuitively, they arise from new information that bears on

the security value. µ is the expected price change (the drift). The units

of pt are either levels (e.g., dollars per share) or logarithms. The log form

is sometimes more convenient because price changes can be interpreted

as continuously compounded returns. Some phenomena, however, are

closely linked to a level representation. Price discreteness, for example,

reflects a tick size (minimum pricing increment) that is generally set in

level units.

For reasons that will be discussed shortly, the drift can be dropped in

most microstructure analyses. When µ = 0, pt cannot be forecast beyond

its most recent value: E[pt+1 | pt , pt−1, . . .] = pt . A process with this prop-

erty is generally described as a martingale. One definition of a martin-

gale is a discrete stochastic process {xt} where E |xt | <∞ for all t, and

E(xt+1 | xt , xt−1, . . . ) = xt (see Karlin and Taylor (1975) or Ross (1996)).

Martingale behavior of asset prices is a classic result arising in many

economic models with individual optimization, absence of arbitrage, or

security market equilibrium (Cochrane (2005)). The result is generally

contingent, however, on assumptions of frictionless trading opportunities,

which are not appropriate in most microstructure applications.

The martingale nevertheless retains a prominent role. To develop this

idea, note that expectations in the last paragraph are conditioned on

lagged pt or xt , that is, the history of the process. A more general def-

inition involves conditioning on broader information sets. The process

{xt} is a martingale with respect to another (possibly multidimensional)

process {zt} if E |xt | < ∞ for all t and E(xt+1 | zt , zt−1, . . .) = xt (Karlin

and Taylor (1975), definition 1.2, p. 241). In particular, suppose that at

some terminal time the cash value or payoff of a security is a random

variable v . Traders form a sequence of beliefs based on a sequence of

information sets �1, �2, . . . This sequence does not contract: Something

known at time t is known at time τ > t. Then the conditional expectation
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xt = E[v |�t] is a martingale with respect to the sequence of information

sets {�k}.
When the conditioning information is “all public information,” the

conditional expectation is sometimes called the fundamental value or

(with a nod to the asset pricing literature) the efficient price of the security.

It is the starting point for many of the microstructure models considered

here. One of the basic goals of microstructure analysis is a detailed and

realistic view of how informational efficiency arises, that is, the process by

which new information comes to be impounded or reflected in prices. In

microstructure analyses, transaction prices are usually not martingales.

Sometimes it is not even the case that the public information includes

the history of transaction prices. (In dealer markets, trades are often not

reported.) By imposing economic or statistical structure, though, it is often

possible to identify a martingale component of the price (with respect to

a particular information set). Later chapters will indicate how this can be

accomplished.

A random-walk is a process constructed as the sum of independently

and identically distributed (i.i.d.) zero-mean random variables (Ross

(1996), p. 328). It is a special case of a martingale. The price in Equa-

tion 3.1, for example, cumulates the ut . Because the ut are i.i.d., the price

process is time-homogenous, that is, it exhibits the same behavior when-

ever in time we sample it. This is only sensible if the economic process

underlying the security is also time-homogenous. Stocks are claims on

ongoing economic activities and are therefore plausibly approximated in

the long run by random walks. Securities such as bonds, swaps, options,

and so on, however, have finite maturity. Furthermore, they usually have

well-defined boundary conditions at maturity that affect their values well

in advance of maturity. The behavior of these securities over short sam-

ples may still be empirically well approximated by a random-walk model,

but the random walk is not a valid description of the long-run behavior.

3.3 Statistical Analysis of Price Series

Statistical inference in the random-walk model appears straightforward.

Suppose that we have a sample {p1, p2, . . . , pT }, generated in accor-

dance with Equation 3.1. Because the ut are i.i.d., the price changes

�pt = pt − pt−1 should be i.i.d. with mean µ and variance Var(ut ) = σ2
u,

for which we can compute the usual estimates. When we analyze actual

data samples, however, we often encounter three features that should

at the very least suggest wariness in the interpretation and subsequent

use of the estimates. Short-run security price changes typically exhibit

(1) means very close to zero, (2) extreme dispersion, and (3) depen-

dence between successive observations. Each of these deserves further

elaboration.
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3.3.1 Near-Zero Mean Returns

In microstructure data samples µ is usually small relative to the estimation

error of its usual estimate, the arithmetic mean. For this reason it is often

preferable to drop the mean return from the model, implicitly setting µ

to zero. Zero is, of course, a biased estimate of µ, but its estimation error

will generally be lower than that of the arithmetic mean.

For example, suppose that t indexes days. Consider the properties of

the annual log price change implied by the log random-walk model:

p365 − p0 =
365
∑

t=1

�pt = µAnnual +
365
∑

t=1

ut (3.2)

where µAnnual = 365 µ. The annual variance is Var(p365 − p0) = 365σ2
u. A

typical U.S. stock might have an annual expected return of µAnnual =
0.10 (10%) and an annual variance of σ2

Annual
= 0.252. The implied daily

expected return is µDay = 0.10/365 = 0.000274, and the implied daily vari-

ance is σ2
Day = 0.252/365. With n = 365 daily observations, the standard

error of estimate for the sample average is
√

σ2
Day/n =

√

(0.252/365)/365 =
0.000685. This is about two and a half times the true mean. An estimate of

zero is clearly biased downward, but the standard error of estimate is only

0.000274. At the cost of a little bias, we can greatly reduce the estimation

error.

As we refine the frequency of observations from annually to monthly,

to daily, and so on, the number of observations increases. More numerous

observations usually enhance the precision of estimates. Here, though,

the increase in observations is not accompanied by any increase in the

calendar span of the sample. So do we gain or not? It depends. Merton

(1980) shows that estimates of second moments (variances, covariances)

are helped by more frequent sampling. Estimates of mean returns are

not. For this reason, the expected return will often be dropped from our

microstructure models.

3.3.2 Extreme Dispersion

Statistical analyses of speculative price changes at all horizons generally

encounter sample distributions with fat tails. The incidence of extreme

values is so great as to raise doubt whether population parameters like

kurtosis, skewness, or even the variance of the underlying distribution

are finite.

The convenient assumption that price changes are normally distributed

is routinely violated. For example, from July 7, 1962, to December 31,

2004 (10,698 observations), the average daily return on the Standard &
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Poor’s (S&P) 500 index is about 0.0003 (0.03%), and the standard devi-

ation is about 0.0094. Letting �(z) denote the standard normal distri-

bution function, if returns are normally distributed, then the number

of days with returns below 5% is expected to be 10, 698 × �[(−0.05

−0.0003)/0.0094] ≈ 0.0005, that is, considerably less than 1. In fact, there

are eight such realizations (with the minimum of −20.5% occurring on

October 19, 1987).

Statistical analysis of this sort of dispersion falls under the rubric of

extreme value analysis (see, for example, Coles (2001) and Embrechts,

Kluppelberg, and Mikosch (1997)). For a random variable X the popula-

tion moment of order α is defined as EXα. The normal density possesses

finite moments of all orders. In other distributions, though, a moment may

be infinite because as X goes to ±∞, Xα increases faster than the prob-

ability density declines. If EXα is finite, then the corresponding sample

estimate �Xα
t /T , where T is the sample size, is an asymptotically consis-

tent estimate of EXα (using a law of large numbers). Hypothesis testing,

however, often requires knowing the asymptotic variance of the sample

estimate, which requires existence of the moment of order 2α. To get the

standard error of the mean, for example, we need a consistent estimate of

the variance.

One recent study suggests that finite moments for daily equity returns

exist only up to order 3 and for daily trading volume only up to order

1.5 (Gabaix et al. 2003). These findings, if correct, impose substantive

restrictions on the sorts of models that can sensibly be estimated.

Can safely we ignore this evidence? After all, why should one be

concerned about convergence failures in infinite samples? The answer

is that whatever one’s beliefs about the properties of the distribution

generating the data, the existence of extreme values in finite samples

is an irrefutable fact leading to many practical consequences. Sam-

ple estimates may be dominated by a few extreme values. Increasing

sample size does not increase precision as fast we’d expect. Estimated

parameters are sensitive to model specification. Finally, and most dis-

turbingly in trading applications, conclusions drawn from the model are

fragile.

In some cases, it suffices to apply an ad hoc transformation to the

variable. If trading volume is overdispersed, for example, one can work

with the logarithm or reciprocal (as long as volume is positive). Such

transformations applied to price changes or returns, however, are less

attractive. We can also try to model the overdispersion. Many long-tailed

distributions can be constructed as mixtures of well-behaved distribu-

tions. The question then arises as to the economic meaning of the mixing

variable. One common interpretation is information intensity, that is,

some measure that generally reflects the rate of information arrival and

its importance for valuation. Shephard (2005) discusses the different

perspectives on this important concept.
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3.3.3 Dependence of Successive Observations

Time-series data are ordered, and statistical analysis must at least allow for

the possibility that the ordering is associated with dependence. The most

important summary measures of time-series dependence are the auto-

covariances and autocorrelations. These are defined for a real-valued

time series {xt} as Cov(xt , xt−k ) and Corr(xt , xt−k ) for k = 0, 1, . . .. Under

assumptions discussed more fully in chapter 4, these quantities depend

only on k (the separation between the component terms). Accordingly

they may be denoted γk ≡ Cov(xt , xt−k ) and ρk = Corr(xt , xt−k ). When the

mean of the series is zero, γk may be estimated as the sample average

cross-product, γ̂k = (T − k)−1
∑T

s=k+1 xtxt−k , and the autocorrelations as

ρ̂k = γ̂k/γ̂0 (see Fuller (1996), pp. 313–20).

The increments (changes) in a random walk are uncorrelated. So we

would expect to find ρ̂k ≈ 0 for k �= 0. In actual samples, however, the first-

order autocorrelations of short-run speculative price changes are usually

negative. In October 2003, there were roughly 7,000 trades in PCO. The

estimated first-order autocorrelation of the price changes is ρ̂1 = −0.064

(with an estimated standard error of 0.012). An economic explanation for

this finding is the main contribution of the Roll model.

3.4 The Roll Model of Bid, Ask, and Transaction Prices

In returning to the economic perspective, we keep the random-walk

assumption but now apply it to the (martingale) efficient price instead

of the actual transaction price. Denoting this efficient price by mt , we

assume that mt = mt−1 + ut , where, as before the ut are i.i.d. zero-mean

random variables. We also suppose that all trades are conducted through

dealers (section 2.3.1). The best dealer quotes are bid and ask (offer) prices,

bt and at . If a customer wants to buy (any quantity), he or she must pay

the dealer’s ask price (thereby lifting the ask). If a customer wants to sell,

he or she receives the dealer’s bid price (hitting the bid). Dealers incur

a cost of c per trade. This charge reflects costs like clearing fees and per

trade allocations of fixed costs, such as computers, telephones, and so on.

These costs are noninformational, in the sense that they are not related

to the dynamics of mt . If dealers compete to the point where the costs

are just covered, the bid and ask are mt − c and mt + c, respectively. The

bid-ask spread is at − bt = 2c, a constant.

At time t, there is a trade at transaction price pt , which may be

expressed as

pt = mt + qtc, (3.3)

where qt is a trade direction indicator set to +1 if the customer is buying

and −1 if the customer is selling. We also assume that buys and sells are

equally likely, serially independent (a buy this period does not change the
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probability of a buy next period), and that agents buy or sell independently

of ut (a customer buy or sell is unrelated to the evolution of mt). This model

is most clearly explicated and analyzed in Roll (1984), and will henceforth

be referred to as the Roll model, but certain elements of the analysis were

first discussed by Niederhoffer and Osborne (1966).

The Roll model has two parameters, c and σ2
u. These are most con-

veniently estimated from the variance and first-order autocovariance of

the price changes, �pt . The variance is

γ0 ≡ Var(�pt) = E(�pt)
2 = E

[

q2
t−1c2 + q2

t c2 − 2qt−1qtc
2

−2qt−1utc + 2qtutc + u2
t

]

= 2c2 + σ2
u. (3.4)

The last equality follows because in expectation, all of the cross-products

vanish except for those involving q2
t , q2

t−1, and u2
t . The first-order auto-

covariance is

γ1 ≡ Cov
(

�pt−1, �pt

)

= E�pt−1�pt = E
[

c2
(

qt−2qt−1 − q2
t−1 − qt−2qt

+ qt−1qt

)

+ c
(

qtut−1 − qt−1ut−1 + utqt−1 − utqt−2

)]

= −c2. (3.5)

It is easily verified that all autocovariances of order 2 or higher are zero.

From the above, it is clear that c = √− γ1 and σ2
u = γ0 + 2γ1. Given a sample

of data, it is sensible to estimate γ0 and γ1 and apply these transforma-

tions to obtain estimates of the model parameters. Harris (1990) reports

distributional results.

Based on all trades for PCO in October 2003, the estimated first-order

autocovariance of the price changes is γ̂1 = −0.0000294. This implies

c = $0.017 and a spread of 2c = $0.034. The Roll model is often used in

situations where we don’t possess bid and ask data. In this sample, how-

ever, we do: the (time-weighted) average NYSE spread in the sample is

$0.032, so the Roll estimate is fairly close.

Although this agreement is comforting, it should be noted that the

validity of the assumptions underlying the model is questionable. The

plot in the one-hour segment of figure 3.1 suggests that the bid-ask spread

is varying. In fact, over October it ranged between $0.01 and $0.49. Con-

trary to the assumption of serial independence, the correlation between qt

and qt−1 is about 0.34. That is, buys tend to follow buys, and sells tend to

follow sells. Contrary to the assumption of independence between qt and

ut , changes in the quote midpoint are positively correlated with the most

recent trade direction. These are all important violations of the assump-

tions. In later chapters we will investigate modifications to the model that

will accommodate these effects.
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The Roll model described in the last chapter is a simple structural model,

with a clear mapping to parameters (the variance and autocovariance

of price changes) that are easily estimated. There are many interesting

questions, though, that go beyond parameter estimation. We might want

to forecast prices beyond the end of our data sample or to identify the

series of mt (the unobserved efficient prices) underlying our data. Fur-

thermore, when we suspect that the structural model is misspecified, we

might prefer to make assumptions about the data, rather than about the

model.

To address these issues, the present chapter examines the Roll model

from a different viewpoint. Whereas the previous chapter took a struc-

tural economic perspective, the present one adopts a more data-oriented

statistical “reduced-form” approach. In the process of going back and

forth between the structural and statistical representations, we illustrate

econometric techniques that are very useful in more general situations.

The chapter begins by describing some useful general properties of time

series, proceeds to moving average and autoregressive models, and then

discussing forecasting and estimation.

4.1 Stationarity and Ergodicity

Much statistical inference relies on the law of large numbers (LLN) and

central limit theorem (CLT). These results establish the limiting proper-

ties of estimators as the sample size increases. The usual forms of these

theorems apply to data samples consisting of independent observations.

31
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Time-series data are by nature dependent. To maintain the strength of

the LLN and CLT when independence doesn’t hold, we rely on alter-

native versions of these results that assume stationarity and ergodicity.

The following is an intuitive presentation of these concepts. White (2001)

presents a more rigorous discussion.

A time series {xt} with constant mean, Ext = µ, and autocovariances

Cov(xt , xt−k ) = γk that do not depend on t is said to be covariance

stationary. A time series for which all joint density functions of the

form f (xt), f (xt , xt+1), . . . , f (xt , xt+1, xt+2), . . . don’t depend on t is (strictly )

stationary.

The price changes implied by the Roll model, �pt , are covari-

ance stationary: E�pt = 0 and Cov(�pt , �pt−k ) = γk . The price levels

are not covariance stationary. (Among other things, Var(pt) increases

with t.) Covariance stationarity of the �pt would also be violated if we

replaced the homoscedasticity assumption Eu2
t = σ2

u with something like

Eu2
t = 5 + Cos(t) or a similar time-dependent feature.1

We sometimes describe a sequence of independent observations by

saying that an observation carries no memory of observations earlier in

the sequence. This is too restrictive for time-series analysis. We typically

assume instead that the effects of earlier observations decay and die out

with the passage of time. A time series is ergodic if its local stochastic

behavior is (possibly in the limit) independent of the starting point, that

is, initial conditions. An ergodic process eventually “forgets” where it

started. The price level in the Roll model is not ergodic: The randomness

in the level is cumulative over time. But the price changes are ergodic:

�pt is independent of �pt−k for k ≥ 2. Nonergodicity could be introduced

by positing mt = mt−1 + ut + z, where z is a zero-mean random variable

drawn once at time zero.

The economic models discussed in later chapters (particularly the

asymmetric information models) are often placed in settings where there

is a single random draw of the security’s terminal payoff and the price

converges toward this value. The price changes in these models are not

ergodic because everything is conditional on the value draw. Nor are

they covariance stationary (due to the convergence). Empirical analyses of

these models use various approaches. We sometimes assume that a sam-

ple consists of a string of these models placed end to end (for example, a

sequence of trading days). In this view the sample is an ensemble, a col-

lection of independent sample path realizations. Alternatively, we might

view the models as stylized descriptions of effects that overlap in some

unspecified fashion that results in covariance stationarity. For example,

in each time period, we might have a new draw of some component of

firm value.

Domowitz and El-Gamal (1999) note that ergodicity, in the sense of

dependence on initial conditions, may be an important attribute of mar-

ket mechanisms. In the long run, we would expect security prices to
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reflect fundamentals. A trade mechanism that induces persistent price

components might impair this adjustment.

4.2 Moving Average Models

We will often assume that a time series like {�pt} is covariance sta-

tionary, and now we turn to various ways in which the series can be

represented. We start with a white noise process: a time series {εt} where

Eεt = 0, Var(εt) = σ2
ε , and Cov(εt , εs) = 0 for s �= t. This is obviously covari-

ance stationary. In many economic settings, it is convenient and plausible

to assume that {εt} are strictly stationary and even normally distributed,

but these assumptions will be avoided here. White noise processes are

convenient building blocks for constructing dependent time series. One

such construction is the moving average (MA) model. The moving average

model of order one (the MA(1) process) is:

xt = εt + θεt−1. (4.1)

The white noise driving a time-series model is variously termed the

disturbance, error, or innovation series. From a statistical viewpoint, they

all amount to the same thing. The economic interpretations and connota-

tions, however, vary. When randomness is being added to a nonstochastic

dynamic structural model, the term disturbance suggests a shock to which

the system subsequently adjusts. When forecasting is the main concern,

error conveys a sense of discrepancy between the observed value and the

model prediction. Innovation is the word that is most loaded with eco-

nomic connotations. The innovation is what the econometrician learns

about the process at time t (beyond what’s known from prior observa-

tions). Moving forward in time, it is the update to the econometrician’s

information set. In multivariate models, when xt comprises a particularly

varied, comprehensive, and economically meaningful collection of vari-

ables, the innovation series is often held to proxy the update to the agents’

common information set as well.

The �pt in the Roll model have the property that the autocovariances

are zero beyond lag one. The MA(1) model in (4.1) also has this prop-

erty. For this process, the variance and first-order autocovariance are

γ0 = (1 + θ2)σ2
ε , γ1 = θσ2

ε , and γk = 0 for k > 1. More generally, the moving

average model of order K is

xt = εt + θ1εt−1 + · · · + θK εt−K .

The MA(K ) process is covariance stationary and has the property that

γj = 0 for j > K . If we let K = ∞, we arrive at the infinite-order moving

average process.
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Now comes a point of some subtlety. If we believe that the {�pt} are

generated by the Roll model (a structural economic model), can we assert

that a corresponding moving average model (a statistical model) exists?

By playing around with the θ and σ2
ε parameters in the MA(1) model,

we can obviously match the variance and first-order autocovariance of

the structural �pt process. But this is not quite the same thing as claim-

ing that the full joint distribution of the �pt realizations generated by

the structural model could also be generated by an MA(1) model. More-

over, there’s a good reason for suspecting this shouldn’t be possible.

The structural model has two (uncorrelated) sources of randomness,

ut (the efficient price innovations) and qt (the trade direction indicators).

The MA(1) model has only one source of randomness, εt .

Is the existence of an MA(1) representation an important issue? Why

can’t we simply limit the analysis to the structural model, and avoid

questions of alternative representations? There are several answers. In

the first place, the full structural model involves unobserved variables.

The econometrician observes neither the ut nor qt , so he or she doesn’t

know the efficient price. The moving average representation is a useful

tool for constructing an estimate of the efficient price, as well as for fore-

casting. Moreover, a moving average representation may be valid even if

the structural model is misspecified.

Fortunately, an MA(1) representation for price changes in the Roll

model does exist. In this assertion, we rely on the Wold (not Wald) theo-

rem. The Wold theorem states that any zero-mean covariance stationary

process {xt} can be represented in the form

xt =
∞
∑

j=0

θjεt−j + κt

where {xt} is a zero-mean white noise process, θ0 = 1 (a normalization),

and
∑∞

j=0 θj < ∞. κt is a linearly deterministic process, which in this con-

text means that it can be predicted arbitrarily well by a linear projection

(possibly of infinite order) on past observations of xt . For proofs, see

Hamilton (1994) or Sargent (1979). For a purely stochastic series, κt = 0,

and we are left with a moving average representation.

A related result due to Ansley, Spivey, and Wrobleski (1977) estab-

lishes that if a covariance stationary process has zero autocovariances at

all orders higher than K , then it possesses a moving average representation

of order K . This allows us to assert that an MA(1) representation exists for

the Roll model.

Empirical market microstructure analyses often push the Wold theo-

rem very hard. The structural models are often stylized and under-

identified (we can’t estimate all the parameters). The data are frequently

non-Gaussian (like the trade indicator variable in the Roll model). Covari-

ance stationarity of the observations (possibly after a transformation) is
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often a tenable working assumption. For many purposes, as we’ll see, it

is enough.

Section 3.4 derived the autocovariances of the Roll model (γ0 and γ1)

in terms of the structural parameters (c and σ2
u). The parameters of the

corresponding MA(1) model in Equation (4.1) are θ and σ2
ε . The MA(1) has

autocovariances γ0 = (1 + θ2)σ2
ε and γ1 = θσ2

ε . From the autocovariances (or

estimates thereof) we may compute the moving average parameters:

θ =
γ0 −

√

γ2
0 − 4γ2

1

2γ1
and σ2

ε =
γ0 +

√

γ2
0 − 4γ2

1

2
(4.2)

This is actually one of two solutions, the so-called invertible solution. It

has the property that |θ| < 1, the relevance of which shortly becomes clear.

The other (noninvertible) solution is {θ∗, σ2
ε
∗
}. The relation between the

two solutions is given by θ∗ = 1/θ and σ2
ε
∗ = θ2σ2

ε . For the noninvertible

solution, |θ∗| > 1.

4.3 Autoregressive Models

A moving average model expresses the current realization in terms of

current and lagged disturbances. These are not generally observable. For

many purposes (particularly forecasting) it is useful to express the current

realization in terms of past realizations. This leads to the autoregressive

form of the model.

To develop this for the MA(1) case, note that we can rearrange

�pt = εt + θεt−1 as εt = �pt − θεt−1. This gives us a backward recursion

for εt : εt−1 = �pt−1 − θεt−2, εt−2 = �pt−2 − θεt−3, and so forth. Using this

backward recursion gives

�pt = θ
(

�pt−1 − θ
(

�pt−2 − θ
(

�pt−3 − θεt−4

)))

+ εt

= θ�pt−1 − θ2�pt−2 + θ3�pt−3 − θ4εt−4 + εt ; (4.3)

or, with infinite recursion:

�pt = θ�pt−1 − θ2�pt−2 + θ3�pt−3 + · · · + εt . (4.4)

This is the autoregressive form: �pt is expressed as a linear function of

its own lagged values and the current disturbance. Although the moving

average representation is of order one, the autoregressive representation

is of infinite order.

If |θ| < 1, then the autoregressive representation is convergent: the

coefficients of the lagged �pt converge to zero. Intuitively, the effects

of lagged realizations eventually die out. When a convergent autore-

gressive representation exists, the moving average representation is said
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to be invertible. Convergence is determined by the magnitude of θ.

The condition |θ| < 1 thus defines the invertible solution for the MA(1)

parameters (compare equation (4.2) and the related discussion). Hamilton

(1994, p. 64) discusses general criteria for invertibility.

To move between moving average and autoregressive representations,

it’s often convenient to use the lag operator, L (sometimes written as

the backshift operator, B). It is defined by the relation Lxt = xt−1. Mul-

tiple applications work in a straightforward fashion (L2xt = xt−2, etc.).

The operator can also generate “leads” (e.g., L−3xt = xt+3). Using the lag

operator, the moving average representation for �pt is �pt = εt + θLεt =
(1 + θL)εt . The autoregressive representation is:

�pt =
(

θL − θ2L2 + θ3L3 + · · ·
)

�pt + εt .

We derived this by recursive substitution. But there is an alterna-

tive construction that is particularly useful when the model is compli-

cated. Starting from the moving average representation, we may write

(1 + θL)−1�pt = εt , where we’ve essentially treated the lag operator term as

an algebraic quantity. If L were a variable and |θ| < 1, we could construct

a series expansion of the left-hand side around L = 0. This expansion,

through the third order, is [1 − θL + θ2L2 − θ3L3 + O(L4)]�pt = εt , where

O(L4) represents the higher order terms. This can be rearranged to obtain

the autoregressive representation given in equations (4.4) or (4.5).

In summary, we have modeled a time series by assuming covariance

stationarity, proceeding to a moving average representation (via the Wold

theorem), and finally to the autoregressive representation. The last two

representations are equivalent, but in any particular problem, one might

be considerably simpler than the other. For example, the Roll model is a

moving average of order one, but the autoregressive representation is of

infinite order.

Sometimes, though, the autoregressive representation is the sim-

pler one. An autoregressive representation of order one has the form

xt = φxt−1 + εt , or in terms of the lag operator, (1 − φL)xt = εt . The moving

average form is:

xt = (1 − φL)−1 εt =
(

1 + φL + φ2L2 + · · ·
)

εt

= εt + φεt−1 + φ2εt−2 + · · ·

Here, we have used a power series expansion of (1 + φL)−1. Recursive sub-

stitution would give the same result. The moving average representation

is of infinite order.

The following exercise develops an autoregressive representation for

a persistent discretely valued series. It demonstrates the generality of the

Wold theorem by showing that such a process can be modeled using zero-

mean uncorrelated disturbances. It also illustrates the limitations of the

theorem by showing that the disturbances are dependent.
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Exercise 4.1. For the trade direction indicator qt in the Roll
model, Madhavan, Richardson, and Roomans (1997)
allow for serial dependence. Suppose that qt ∈ {−1, +1}, and that
Pr (qt+1 = +1|qt = +1) = Pr (qt+1 = −1|qt = −1) = α (and, of course,
Pr (qt+1 = +1|qt = −1) = Pr (qt+1 = −1|qt = +1) = (1 − α). α is called the
continuation probability. If α = 1/2, trade directions are uncorrelated.
If 1/2 < α < 1, trade directions are persistent (buys tend to follow buys,
etc.). With this structure, qt may be expressed as the AR(1) process
qt = φqt−1 + vt where Ev t = 0, Ev2

t = σ2
v , and Evtvt−k = 0 for k �= 0. The

model may be analyzed by constructing a table of the eight possible
realizations (paths) of (qt , qt+1, qt+2).

a. Assuming that qt is equally likely to be ±1, compute the proba-
bilities of each path. Show that φ = 2α − 1.

b. Compute vt+1 and vt+2. Verify that Evt+1 = Ev t+2 = 0 and
Cov(vt+1, vt+2) = Ev t+1vt+2 = 0.

c. Demonstrate that the vt values are not serially independent by
verifying that Cov(vt+1, v2

t+2) �= 0.

4.4 Forecasting

A crucial calculation in agents’ trading decisions is their forecast of

the security’s future value. It is convenient to construct these fore-

casts by taking expectations of MA and AR representations, but there

is an important qualification. The assumption of covariance station-

arity suffices only to characterize a restricted form of the expectation.

An expectation (e.g., E[xt |xt−1, xt−2, . . .]) generally involves the full joint

distribution f (xt , xt−1, xt−2, . . .), not just the means and covariances. Con-

siderable simplification results, however, if we approximate the true

expectation by a linear function of the conditioning arguments, that is,

E[xt |xt−1, xt−2, . . . ] ≈ α0 + α1xt−1 + α2xt−2 + · · · . This approximate expec-

tation is technically a linear projection. When the difference is important,

it will be denoted E∗ to distinguish it from the true expectation. The

following material summarizes results on linear forecasting discussed at

greater length in Hamilton (1994, pp. 72–116).

The technique of linear projection is especially compatible with AR

and MA representations because the AR and MA representations have

no more and no less information than is needed to compute the projec-

tion. It is quite conceivable that a more complicated forecasting scheme,

for example, one involving nonlinear transformations of {xt−1, xt−2, . . .},

might be better (have smaller forecasting errors) than the linear projection,

but such a forecast could not be computed directly from the AR or MA

representation. More structure would be needed.

We’ll first consider the price forecast in the Roll model. Suppose

that we know θ and have a full (infinite) price history up the time t,
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{pt , pt−1, pt−2, . . .}. Using the autoregressive representation, we can

recover the innovation series {εt , εt−1, εt−2, . . .}. Then:

E∗ [�pt+1|pt , pt−1, . . .
]

= E∗ [εt+1 + θεt |pt , pt−1, . . .
]

= θεt . (4.6)

Therefore, the forecast of next period’s price is: ft ≡ E∗[pt+1|pt , pt−1, . . . ] =
pt + θεt . How does ft evolve?

�ft = ft − ft−1 = pt + θεt −
(

pt−1 + θεt−1

)

= (εt + θεt−1) + θεt − θεt−1 = (1 + θ) εt . (4.7)

That is, the forecast revision is a constant multiple of the innovation. The

innovations process is uncorrelated, so the forecast revision is as well.

Now we raise a more difficult question. A martingale has uncorrelated

increments, so ft might be a martingale. Can we assert that ft = mt , that is,

have we identified the true implicit efficient price? It turns out that there

is a bit of problem. If ft = mt , then pt = ft + cqt and �pt =�ft + c�qt . But

this implies

�pt = εt + θεt−1 = (1 + θ) εt + c�qt ⇔ −θ (εt − εt−1) = c�qt . (4.8)

In other words, all of the randomness in the model is attributable to the

qt . But this is structurally incorrect: We know that changes in the efficient

price, ut , also contribute to the εt . Thus, we have not identified mt . It will

later be shown that ft = E∗[mt |pt , pt−1, . . .], that is, that ft is the projection

of mt on the conditioning variables.

Exercise 4.2 The Roll model assumes that trade directions are
serially uncorrelated: Corr(qt , qs) = 0 for t �= s. In practice, one often
finds positive autocorrelation (see Hasbrouck and Ho (1987) Choi,
Salandro, and Shastri (1988)). Suppose that Corr(qt , qt−1) = ρ > 0 and
Corr(qt , qt−k ) = 0 for k > 1. Suppose that ρ is known.

a. Show that Var(�pt) = 2c2(1 − ρ) + σ2
u, Cov(�pt , �pt−1) = −c2(1 − 2ρ),

Cov(�pt , �pt−2) = −c2ρ, and Cov(�pt , �pt−k ) = 0 for k > 2.
b. Suppose that 0 < ρ < 1 describes the true structural model. We

compute an estimate of c, denoted ĉ, assuming that the orginal
Roll model is correct. Show that ĉ < c, that is, that ĉ is biased
downward.

Exercise 4.3 The basic Roll model assumes that trade directions are
uncorrelated with changes in the efficient price: Corr(qt , ut) = 0.
Suppose that Corr(qt , ut) = ρ, where ρ is known, 0 < ρ < 1. The idea
here is that a buy order is associated with an increase in the security
value, a connection that will be developed in the models of
asymmetric information. Suppose that ρ is known.
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a. Show that Var(�pt) = 2c2 + σ2
u + 2cρσu, Cov(�pt , �pt−1) = −c(c +

ρσu), and Cov(�pt , �pt−k ) = 0 for k > 1.
b. Suppose that 0 < ρ < 1 describes the true structural model. We

compute an estimate of c, denoted ĉ, assuming that the orginal
Roll model is correct. Show that ĉ > c, that is, that ĉ is biased
upward.

4.5 Estimation

In practice, the Roll model parameters are usually estimated as transfor-

mations of the estimated variance and first-order autocovariance of the

price changes (see section 3.4). It is not uncommon, however, for the esti-

mated first-order autocovariance to be positive. Harris (1990) shows that

this can easily happen due to estimation error, even though the model is

correctly specified. In these cases, Hasbrouck (2005) suggests a Bayesian

approach.

More generally, MA and AR representations can be estimated using

a wide variety of approaches. The MA parameters can be obtained from

the autocovariances (by solving the set of equations and requiring that

the solution be invertible). MA models can be estimated via maximum

likelihood (assuming a particular distribution for the disturbances). The

MA representation can also be obtained by numerically inverting the AR

representation.

The autoregressive representation can often be conveniently estimated

using ordinary least squares (OLS). The basic requirement for consistency

of OLS estimation is that the residuals are uncorrelated with the regres-

sors. This is true in equation (4.4) because the {εt} are serially uncorrelated,

and the regressors (lagged price changes) are linear functions of prior

realizations of εt . For example, �pt−1 = εt−1 + θεt−2 is uncorrelated with εt .

Microstructure data often present particular challenges to statistical

software. Samples often contain embedded breaks. In a sample of intra-

day trade prices that spans multiple days, for example, the closing price

on one day and the opening price on the following day will appear succes-

sively. The overnight price change between these observations, though,

will almost certainly have different properties than the intraday price

changes. If the goal is modeling the latter, the overnight price changes

should be dropped. This is often accomplished by inserting missing values

into the series at the day breaks.

A related issue concerns lagged values realized before the start of the

sample. In an autoregression like equation (4.4), if t is the first observation

of the sample, none of the lagged values on the right-hand side are known.

Most non-microstructure applications take the perspective that the start

of sample simply represents the beginning of the record for a process

that was already unfolding. For example, when a sample of GDP data
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begins in 1900, one would assume that the economy had been up and

running prior to that date, and that 1900 merely represented the start of the

record. In other words, prior to 1900 the process was evolving unobserved.

The correct estimation approach is then unconditional, that is, the lagged

missing values are viewed as unknown but distributed in accordance with

the model. In many microstructure situations, though, the data begin right

at the start of trading process. There is no prior unobserved evolution of

the trading process. In these cases, conditional estimation, wherein the

missing lagged disturbances are set to zero, is more defensible.

4.6 Strengths and Weaknesses of Linear Time-Series Models

This chapter reviews the elements of linear time-series analysis. The

development begins with covariance stationarity, which is a plausible

and minimal working assumption in many modeling situations. Using

the Wold theorem, this leads to a moving average model, then to a vector

autoregression, and finally to a forecasting procedure. These are power-

ful results, but to maintain a balanced perspective, it is now necessary to

dwell on some of the framework’s limitations.

The characterization of a time series offered by the linear models

is not complete. The models do not fully describe the data-generating

process. They do not specify how we should computationally simulate

the process. Exercise 4.2, for example, posits first-order autocorrela-

tion in the trade directions. We might simulate this as follows. Let

at = ut + βut−1 where ut ∼ N (0, σ2
u) and 0 < β < 1. Then let qt = Sign(at),

where Sign(x) = +1 if x < 0; −1 if x < 0; and 0 if x = 0. The resulting {qt}

process is covariance stationary; we can specify AR and MA models,

identify their parameters, compute forecasts E∗[qt |qt−1, qt−2, . . .], and so

on. We can’t, however, completely reverse the inference and recover the

generating mechanism.

As demonstrated in exercise 4.1, the disturbances in MA and AR mod-

els are not serially correlated, but may be serially dependent (as mani-

fested by nonzero serial moments of order greater than two). This bears

directly on the structural interpretations of these models. The MA and AR

representations of a discretely valued process such as qt are essentially

linear models of limited dependent variables. The usual econometric

guidelines discourage such specifications on the grounds that the dis-

turbances must possess complicated and nonintuitive properties (see, for

example, Greene (2002) p. 665).

These concerns are not misplaced in the present situation if our goal is

a fully specified structural model. For example, if we believe that the

at in the generating process summarize attributes of arriving individ-

ual traders, the higher order serial dependencies will generally imply

complicated higher order dependencies in the attributes of successively
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arriving individuals. Rather than model this behavior, it is usually easier

to specify a statistical model (such as a logit or probit) for which these

features are not needed.

Logit and probit models are certainly part of the microstructure toolbox.

We do not, however, use them reflexively simply because some variables

of interest happen to be discrete. They are more complicated than linear

specifications, and so are more demanding in programming and computa-

tion. A larger consideration is that there may be other structural features

that are more important than discreteness. Probably paramount among

these other concerns is time-varying and persistent volatility.

Even in light of these remarks, linear time-series analysis nevertheless

retains strength and utility. It provides logically coherent and computa-

tionally simple tools for describing first-order dynamics, forecasting, and

forming expectations. The underlying assumptions are minimal (chiefly

covariance stationarity), so the analyses may be more robust to misspeci-

fication than more refined models. The representations are compatible

with a wide range of structural models and so are relatively easy to illus-

trate and interpret. In short, they are useful aids in developing intuitions

of how financial markets work.
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Sequential Trade Models

5.1 Overview

In the Roll framework, everyone possesses the same information. New

public information can cause the quotes to change, but trades have no

impact. Because trades are not informative, there’s no particular need

for them to be reported and disseminated in a timely fashion. Trading is

not a strategic problem because agents always face the same spread. The

costs reflected in dealers’ spreads reflect only expenditures for computers,

communications, salaries, business fees, and so on, the sort of expenses

that a wholesaler of any good or service might incur.

Although some securities markets might function this way some of the

time, most work very differently. Trade reports are valuable information.

Orders appear to move prices. Spreads vary across markets and with mar-

ket conditions. Of course, trading strategies must reflect these realities.

It turns out that dropping the assumption of uniform information opens

the door for sensible economic explanations for these features of mar-

ket behavior. The asymmetric information models described in this and

following chapters take this direction.

These models have the following general features. The security payoff

is usually of a common value nature. The primary benefit derived from

ownership of the security is the resale value or terminal liquidating divi-

dend that is the same for all holders. But for trade to exist, we also need

private value components, that is, diversification or risk exposure needs

that are idiosyncratic to each agent. The private values are often mod-

eled in an ad hoc fashion. Sometimes we simply assert the existence of

unspecified private values that generate the assumed behavior.

42
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Generally, public information initially consists of common knowledge

concerning the probability structure of the economy, in particular the

unconditional distribution of terminal security value and the distribu-

tion of types of agents. As trading unfolds, the most important updates

to the public information set are market data, such as bids, asks, and the

prices and volumes of trades. Many of the models make no provision for

the arrival of nontrade public information (e.g., news announcements)

during trading. Private information may consist of a signal about termi-

nal security value, or more commonly, perfect knowledge of the terminal

security value.

When all agents are ex ante identical, they are said to be symmetric.

This does not rule out private values or private information. It simply

means that all individual-specific variables (e.g., the coefficient of risk

aversion, a value signal) are identically distributed across all partici-

pants. In an asymmetric information model, some subset of the agents

has superior private information.

The majority of the asymmetric information models in microstructure

examine market dynamics subject to a single source of uncertainty, that

is, a single information event. At the end of trading, the security payoff

(terminal value) is realized and known. Thus, the trading process is an

adjustment from one well-defined information set to another. From a sta-

tistical perspective, the dynamics of this adjustment are neither stationary

nor ergodic. The dynamics are not time-homogenous, although path real-

izations can be sequentially stacked to provide a semblance of ongoing

trading.

Theoretical market microstructure has two main sorts of asymmetric

information models. In the sequential trade models, randomly selected

traders arrive at the market singly, sequentially, and independently. Key

early references along this line of inquiry include Copeland and Galai

(1983) and Glosten and Milgrom (1985). The other class of models usu-

ally features a single informed agent who can trade at multiple times.

Following O’Hara (1995), we’ll describe these as strategic trader models.

When an individual trader only participates in the market once (as in the

sequential trade models), there is no need for her to take into account

the effect her actions might have on subsequent decisions of others. A

trader who revisits the market, however, must make such calculations,

and they involve considerations of strategy. This second class of models

is also sometimes described as continuous auction, but the continuity of

the market is not really an essential feature. This line of thought begins

with Kyle (1985).

The essential feature of both models is that a trade reveals something

about the agent’s private information. A “buy” from the dealer might result

from a trader who has private positive information, but it won’t originate

from a trader who has private negative information. Rational, competitive

market makers will set their bid and ask quotes accordingly. All else equal,
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more extreme information asymmetries lead to wider quotes. Trades will

also engender a “permanent” impact on subsequent prices. The spread

and trade-impact effects are the principal empirical implications of these

models. We begin with the sequential trade models.

5.2 A Simple Sequential Trade Model

The essential sequential trade model is a simple construct. The model

presented here is a special case of Glosten and Milgrom (1985). It is also

contained as a special case in many other analyses. There is one security

with a value (payoff) V that is either high or low, V or V . The prob-

ability of the low outcome is δ. The value is revealed after the market

closes. It is not, however, affected by trading. It is determined, by a ran-

dom draw of nature, prior to the market open. The trading population (the

customers) comprises informed and uninformed traders. Informed traders

(insiders) know the value outcome. The proportion of informed traders in

the population is µ.

A dealer posts bid and ask quotes, B and A. A trader is drawn at ran-

dom from the population. If the trader is informed, she buys if V = V and

sells if V = V . If the trader is uninformed, he buys or sells randomly and

with equal probability. The dealer does not know whether the trader is

informed. The event tree for the first trade is given in figure 5.1.

In the figure, I and U denote the arrivals of informed and uninformed

traders. A buy is a purchase by the customer at the dealer’s ask price, A;

a sell is a customer sale at the bid. The value attached to the arrow is the

probability of the indicated transition. Total probabilities are obtained by

Figure 5.1. The event tree for the basic
sequential trade model.
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multiplying along a path. For example, the probability of a low realiza-

tion for V, followed by a the arrival of an uninformed trader who buys

is δ(1 − µ)/2. The sum of the total probabilities over terminal Buy nodes

gives the unconditional probability of a buy: Pr(Buy) = (1 + µ(1 − 2δ))/2.

Similarly, Pr(Sell ) = (1 − µ)(1 − 2δ))/2. In the case where δ = 1/2 (equal

probabilities of good and bad outcomes), the buy and sell probabilities

are also equal.

Now consider the dealer’s situation. The purchases and sales of the

uninformed traders are not sensitive to the quoted bid or ask. So if the

dealer is a monopolist, expected profits are maximized by setting the bid

infinitely low and the ask infinitely high. Obviously, at these prices, only

the uninformed trade. In practice, the dealer’s market power is constrained

by competition and regulation. Competition arises from other dealers, but

also and more generally from anyone who is setting a visible quote, such

as a public customer using a limit order. In some venues, regulation limits

the dealers’ power. For example, NASD’s Rules of Fair Practice (Article

III, Section IV) generally prohibit markups (sale price over purchase price)

in excess of 5%.

We’ll assume that competition among dealers drives expected profits to

zero. Furthermore, for the usual reasons, the dealer can’t cross-subsidize

buys with sells or vice versa. (If he were making a profit selling to cus-

tomers, for example, another dealer would undercut his ask.) It thus

suffices to consider buys and sells separately.

The dealer’s inference given that the first trade is a buy or sell can be

summarized by her revised beliefs about the probability of a low outcome,

denoted δ1( · ). Given that the customer buys, this probability is

δ1(Buy) = Pr(V |Buy) = Pr(V , Buy)

Pr(Buy)
= δ(1 − µ)

1 + µ(1 − 2δ)
. (5.1)

Because µ and δ are between zero and one, ∂δ1(Buy)/∂µ < 0: The revi-

sion in beliefs is stronger when there are more informed traders in the

population.

At the end of the day, the dealer’s realized profit on the transaction

is π = A − V . Immediately after the trade, the dealer’s expectation of

this profit is E[π|Buy ] = A − E[V |Buy ], where E[V |Buy ] = δ1(Buy )V +
(1 − δ1(Buy ))V . If competition drives this expected profit to zero, then

A = E[V |Buy ] = V (1 − µ) δ + V (1 − δ)(1 + µ)

1 − µ(1 − 2δ)
. (5.2)

A dealer’s quote is essentially a proposal of terms of trade. When the bid

is hit or the offer is lifted, this proposal has been accepted. In some trading

situations, such an acceptance induces dismay. Depending on the context,

this is variously termed the winner’s curse, ex post regret, or (in the real

estate market) buyer’s remorse. In the present model, however, the ask is
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simply what the dealer believes the security to be worth. Ex post regret

does not arise. The quote is regret-free.

The ask quote strikes a balance between informed and uninformed

traders. The conditional expectation of value can be decomposed as

E[V |Buy ] = E[V |U , Buy ]Pr(U |Buy) + E[V |I , Buy ]Pr(I |Buy). (5.3)

Substituting this into the zero-expected profit condition A = E[V |Buy ] and

rearranging gives:

(A − E[V |U , Buy ])
︸ ︷︷ ︸

Gain from an

uninformed trader

Pr(U |Buy) = − (A − E[V |I , Buy ])
︸ ︷︷ ︸

Loss to an

informed trader

Pr(I |Buy) (5.4)

The expected gains from uninformed traders are balanced by the losses to

informed traders. In this model, therefore, there is a net wealth transfer

from uninformed to informed traders.

The analysis for the dealer’s bid is similar. Following a sale to the

dealer,

δ1(Sell) = Pr(V |Sell) = Pr(V , Sell)

Pr(Sell)
= δ(1 + µ)

1 − (1 − 2δ)µ
. (5.5)

For δ and µ between zero and one, δ1(Sell) > δ1(Buy ). V is less likely if the

customer bought, reasons the dealer, because an informed customer who

knew V = V would have sold. Furthermore ∂δ1(Sell)/∂µ > 0. The dealer’s

bid is set as

B = E[V |Sell] = V (1 + µ) δ + V (1 − µ)(1 − δ)

1 + µ(1 − 2δ)
. (5.6)

The bid-ask spread is

A − B = 4(1 − δ)δµ(V − V )

1 − (1 − 2δ)2µ2
. (5.7)

In the symmetric case of δ = 1/2, A − B = (V − V )µ.

In many situations the midpoint of the bid and ask is taken as a proxy

for what the security is worth absent transaction costs. Here, the midpoint

is equal to the unconditional expectation EV only in the symmetric case

(δ = 1/2). More generally, the bid and ask are not set symmetrically about

the efficient price.

Exercise 5.1 As a modification to the basic model, take δ = 1/2
and suppose that immediately after V is drawn (as either V or V ),
a broker is randomly drawn. The probability of an informed trader
within broker b’s customer set is µb. Other brokers have proportion
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µ∼b, with µb < µ∼b. Quote setters post bids and asks. If the order
comes into broker b, however, he has option to trade against the
customer by matching the bid or ask set by the other dealers.
Show that broker b’s expected profits on a customer buy order
are (V − V )(µ∼b − µb)/2 > 0.

Exercise 5.2 Consider a variant of the model in which there is
informed trading only in the low state (V = V ). Verify that

δ1(Buy) = δ(1 − µ)

1 − δµ
; δ1(Sell) = δ(1 + µ)

1 + δµ

Ask = V (1 − δ) + Vδ(1 − µ)

1 − δµ
; Bid = V (1 − δ) + Vδ(1 + µ)

1 + δµ
.

Exercise 5.3 Consider a variant of the model in which informed
traders only receive a signal S about V. The signal can be either low or
high: S ∈ {S, S}. The accuracy of the signal is γ : Pr[S|V ] = Pr[S|V ] = γ.
Informed traders always trade in the direction of their signal. Show
that δ(Buy ) = [δ1(1 − (2γ − 1)µ)]/[1 − (2γ − 1)(2δ − 1)µ].

5.3 Market Dynamics: Bid and Ask Quotes over Time

After the initial trade, the dealer updates his beliefs and posts new quotes.

The next trader arrives, and the process repeats. This recurrence is clearest

in the expressions for δ(Buy ) and δ(Sell) in Eqs. (5.1) and (5.5). These

equations map a prior probability (the δ in the right-hand side) into a

posterior probability based on the direction of the trade. Let δk denote the

probability of a low outcome given δk − 1 and the direction of the kth trade,

with the original (unconditional) probability being δ0 ≡ δ. Then Eqs. (5.1)

and (5.5) can be generalized as

δk(Buyk ; δk−1) = δk−1(1 − µ)

1 + µ(1 − 2δk−1)
and

δk(Sellk ; δk−1) = δk−1(1 + µ)

1 − (1 − 2δk−1)µ
. (5.8)

The updating recursion can be expressed in general form because all

probabilities in the event tree except δ are constant over time.

Exercise 5.4 The δk following a sequence of orders can be
expressed recursively as δk (Order1, Order2, . . . , Orderk ) = δk (Orderk ;
δk − 1 (Orderk − 1; δk − 2(Orderk − 2; . . . ))). Verify that δ2(Sell1, Buy2) = δ.
That is, offsetting trades are uninformative.
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Market dynamics have the following features:

• The trade price series is a martingale. Recall from the foregoing
analysis that Bk = E[V |Sellk ] and Ak = E[V |Buyk ]. Because the
trade occurs at one or the other of these prices, the sequence
of trade prices {Pk} is a sequence of conditional expectations
E[V |�k ] where �k is the information set consisting of the history
(including the kth trade) of the buy/sell directions. A sequence
of expectations conditioned on expanding information sets is a
martingale.

• The order flow is not symmetric. Using qk to denote the trade
direction as we did in the Roll model (+1 for a buy, −1 for a sell),
E[qk |�k − 1] is in general nonzero.

• The spread declines over time. Knowing the long-run proportion
of buys and sells in the order flow is tantamount to knowing the
outcome. With each trade, the dealer can estimate this proportion
more precisely, and hence uncertainty is reduced.

• The orders are serially correlated. Although the agents are drawn
independently, one subset of the population (the informed
traders) always trades in the same direction.

• There is a price impact of trades. For any given pattern of buys and
sells through trade k, a buy on the k + 1 trade causes a downward
revision in the conditional probability of a low outcome, and a
consequent increase in the bid and ask. The trade price impact
is a particularly useful empirical implication of the model. It can
be estimated from market data and is plausibly a useful proxy for
information asymmetries.

5.4 Extensions

The sequential trade framework is a modeling platform that is easily

extended to accommodate various features of trading. The following

subsections describe some of these developments.

5.4.1 Quote Matching

To this point the information asymmetries in the model have centered on

fundamental value. Superior information concerning a security’s payoffs

certainly bestows an economic advantage. But this is not the only sort

of information differential that can arise. En route to the market nexus,

most orders pass through brokers or other intermediaries, whose rela-

tionships with the order submitters may convey advantage. Brokers, for

example, usually possess trading history, credit scores and other sorts

of client data. If their assessment of the likelihood that the customer

is informed, conditional on customer identity, is lower than the like-

lihood for other brokers, they may profitably trade against their own
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customers if this is permitted. Exercise 5.1 describes a stylized model

of this behavior.

This model can be considered at best a partial equilibrium. Why do

broker b’s customers include more sheep and fewer wolves? Why can’t

other brokers attract a similar customer base? The model nevertheless

illustrates a nonfundamental informational advantage. This is an impor-

tant point because although information asymmetries related to value

are quite plausible in some markets, they are more dubious in others. In

equity markets, for example, advance knowledge of an earnings surprise,

takeover announcement, or similar event confers an obvious advantage.

Similar events do not, however, characterize the government bond and

foreign exchange markets. Models of these markets, therefore, must rely

on a broader concept of private information. This important point has

been stressed by Lyons (2001).

5.4.2 Fixed Transaction Costs

Suppose that in addition to asymmetric information considerations, the

dealer must pay a transaction cost c on each trade (as in the Roll model).

The modification is straightforward. The ask and bid now are set to recover

c as well as the information costs: A = E[V |Buy ] + c and B = E[V |Sell] − c.

The ask quote sequence may still be expressed as a sequence of condi-

tional expectations: Ak = E[V |�k ] + c, where �k is the information set

that includes the direction of the kth trade. Therefore the ask sequence

is a martingale. So, too, is the bid sequence. Because trades can occur

at either the bid or the ask, however, the sequence of trade prices is not

a martingale (due to the ± c asymmetry in the problem). In terms of the

original Roll model, the effect of asymmetric information is to break the

independence between trade direction qt and the innovation to the effi-

cient price ut . Developments along these lines are discussed in Glosten

and Milgrom (1985, p. 83).

5.4.3 Price-Sensitive Liquidity Traders and Market Failures

The uninformed traders in the basic model are, if not necessarily stupid,

then at least rather simple. They aren’t price sensitive: Their trading

demands are inelastic. If they have to buy, they’ll pay the ask without

reservation. Such desperation does exist, but it is not the rule. Most

traders, even if driven by private value considerations, are somewhat price

sensitive.

The traders (both informed and uninformed) in Glosten and Milgrom

(1985) are actually modeled as agents subject to a random utility,

U = ρxV + C , in their notation. Here, ρ is the rate of substitution between

current and future (terminal date) consumption, x is the number of shares

held at the payoff date, and C is current consumption. ρ is random across
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traders, and its distribution is common knowledge. High ρ implies a strong

preference for future consumption and therefore (other things equal), a

tendency to buy the security. The dealer’s ρ is normalized to unity. The

price of current consumption may also be normalized to unity.

Initially for an uninformed trader EU = ρxEV + C . He will buy (paying

the dealer’s ask price A) if ρEV > A. He will sell (at the dealer’s bid price B)

if ρEV < B. If B < ρEV < A, the agent won’t trade. (In the present model,

a nontrade event is uninformative. When there is event uncertainty, a

nontrade may be informative. This point is developed shortly.)

With inelastic uninformed trading demands, the dealer can set the

bid and ask as wide as necessary to cover her losses to the informed

traders. With elastic demands, though, there will generally be fewer unin-

formed agents willing to trade as these prices. The zero-expected-profit

equilibrium will generally therefore exhibit a wider spread than in the

inelastic case.

It is also possible that there exist no bid and ask values (other than B = V

and A = V ) at which the dealer’s expected profit is nonnegative. That is,

the uninformed traders are so price sensitive that they are unwilling to

participate in sufficient number to cover the dealer’s losses to the informed

traders (Glosten and Milgrom 1985, p. 84). Agents trying to access the

market bid and ask quotes see a blank screen. This is a market failure.

The market failure can be repaired by information dissemination that

removes the asymmetry or requiring the dealer to trade at a loss (pre-

sumably to be offset by some other benefit or concession). In fact, both

do occur. Trading often stops (or is officially halted) pending a major

news announcement. Exchanges, dealer associations, and simple consid-

erations of reputation often effectively force a dealer to maintain a market

presence when he would prefer to withdraw.

This is a point of considerable social and regulatory importance.

Though coverage and enforcement varies widely, most countries now

have laws that prohibit insider trading. These prohibitions are grounded

in considerations of fairness and economic efficiency. The economic

efficiency argument holds that market failures are extremely costly for

the uninformed traders, who are denied the gains from trade (such as

improved risk sharing, etc.).

5.4.4 Event Uncertainty

In actual security markets, information and information asymmetries

often arrive in a lumpy fashion. Long periods with no new information

and steady or sluggish trading are punctuated by periods of extremely

active trading before, during, and after major news announcements.

Easley and O’Hara (1992) model this variation using event uncertainty.

Taking the basic model as the starting point, a random step is placed at

the beginning of the day: whether an information event has occurred.
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Figure 5.2. Event tree at the start of the day.

Figure 5.2 depicts the new event tree. Besides the random occurrence

of information events, the tree also features an additional type of trader

action: no trade. For “no trade” to convey useful information, it must

be observable. In the empirical implementation discussed in the next

chapter, “no trade” will be reinterpreted as something more akin to “slow

trade.” In the present context, though, it is most straightforward to envi-

sion a market where agents physically approach the dealer and then

decide whether to trade.

The updating of dealers beliefs is fairly intuitive. A customer buy might

arise from an informed buyer, and so increases the conditional probability

of V ; a customer sale increases the perceived likelihood of V . A no-trade

event decreases the dealer’s conditional belief that an information event

has occurred. Because information asymmetries can only arise subsequent

to an information event, the dealer’s perceived cost of informed trading

drops after a no-trade event, and the spread narrows. This implication of

the model has influenced empirical work.

An informed trader always trades (in the direction of her knowledge).

An uninformed trader might not trade. The no-trade probabilities for unin-

formed agents are the same whether an information event has occured or

not, but the proportion of uninformed traders in the customer mix is higher

in the absence of an information event. To the dealer, therefore, absence

of trade suggests a decreased likelihood of an information event.

5.4.5 Orders of Different Sizes

The basic sequential trade model has one trade quantity. Trades in real

markets, of course, occur in varying quantities. Easley and O’Hara (1987)

present a framework similar to that used in the last section. Their model

features event uncertainty and two possible order sizes. The market maker
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posts one set of bid and ask quotes for small trades and another set for large

trades.

The most challenging aspect of model construction is the requirement

that the zero-expected-profit condition must hold for all quantities and

directions. Expected losses on large buy orders, for example, can’t be

cross-subsidized by expected profits on small sell orders.

In the models considered to this point, all trades in which the mar-

ket maker might participate have some nonzero probability of involving

an uninformed trader. This is a pooling feature of the trade mix. Were

some class of trades to involve only informed traders (and therefore cer-

tain losses), no bid and ask prices (except V and V ) would be possible.

Such outcomes are “separating.” Informed traders maximize their pro-

fits by trading in the largest possible size. For a pooling equilibrium to

exist, large orders must have some chance of originating from uninformed

traders. A pooling equilibrium is also contingent on the existence of event

uncertainty.

5.4.6 Orders of Different Types

The only orders permissible to this point have been marketable ones—

orders that would result in an immediate execution. Real-world security

markets admit a much wider range. Many of the variations arise when

a customer has a trading strategy that can be codified in a simple rule,

that when communicated with the order avoids the necessity for further

monitoring or modification on the customer’s part.

One common variant is the price-contingent order. When used to sell,

these are called stop-loss orders. When the trade price hits or drops

through a preset barrier, the order becomes marketable. For example, con-

sider a stop-loss order to sell triggered (“elected”) at a price of 50. When

the trade price reaches 50, this is converted into a market order. Note that

actual execution price for this order may well be below 50 if the market is

moving quickly. There are also buy-stop orders, which become marketable

when the price rises through a preset barrier.

Easley and O’Hara (1991) analyze a sequential trade model where the

market accepts stop orders. The main implications of the model are as

follows. Informed traders will never use stop orders. The information con-

tent of prices declines (the market becomes less informationally efficient).

There is a greater probability of large price changes. In the model (and in

real markets), a trade can trigger a wave of elections.

5.5 Empirical Implications

This book’s presentation of information asymmetry focuses on its role in

trading situations. More broadly, though, asymmetric information figures
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prominently in many models of corporate finance and asset pricing. The

sequential trade models (and others to follow) establish a connection

between information asymmetries and observable market phenomena.

The construction of proxies for the former via empirical analysis of the

latter ranks as one of the most important goals of empirical microstructure

research.

In the model of section 5.2, the structural asymmetric information

parameter is µ (the proportion of informed traders in the population). µ is

positively related to both the bid-ask spread and the revision in beliefs

(compare Eqs. (5.7) and (5.1)). These results suggest use of the bid-ask

spread or the impact an order has on subsequent prices as proxies for

asymmetric information. Although it is often most convenient to measure

the spread, the spread impounds noninformational costs (c in the Roll

model) and inventory effects (discussed in chapter 11). Price impact, on

the other hand, must be estimated from models of the joint dynamics of

orders and prices. These specifications are discussed in later chapters,

but the general character of the effect is sufficiently important to warrant

immediate elaboration.

5.6 Price Impact

Price impact refers to the effect of an incoming order on subsequent prices.

The term carries connotations of a mechanism that is forceful and direct.

In fact, the process is complex and subtle. It involves signal extraction

mediated through the forces of economic competition.

Signal extraction entails learning about an unknown (in this case,

value) from conditioning information consisting of indirect or noisy obser-

vations (the trades). Put another way, the dealer’s key inference is a

prediction of the closing revelation of true value based on the order flow.

This prediction per se does not fully account for the revision of the bid

and ask, however. For the prediction to be fully reflected in the quotes,

there must be other dealers, who also observe the trade, and who will

compete away any attempt by any other dealer to extract a profit by set-

ting an inferior bid or ask. To take an extreme example, a monopolist

dealer could possibly set B = V + ε and A = V − ε for some trivial ε > 0,

irrespective of prior orders. The order flow and (therefore) the dealer’s

beliefs about V would evolve exactly as in the competitive case, but with

no price changes.

In this light, orders do not “impact” prices. It is more accurate to say

the orders forecast prices. The distinction is important, but empirical res-

olution is difficult. “Functional” causality and forecast enhancement are

generally indistinguishable. The usual (Granger-Sims) test for causality is

implemented as a test of forecasting ability (Hamilton (1994) p. 302).
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Focusing on the signal extraction process leads to interesting impli-

cations. Most important, market dynamics reflect the beliefs of market

participants, not necessarily the reality. In particular, µ is the dealers’

belief about the likelihood of an informed trader. If we subsequently deter-

mine that on a particular day a corporate insider had been illegally trading

in the market, we are in a position to assert that the actual likelihood of

an informed trade on that day was higher than what the dealers believed.

It is the latter beliefs, however, that determine the price reaction. Absent

any changes in these beliefs, we should not expect an empirical analysis

to detect any elevation in the price impact.

A trade causes a revision in the expectation of V for all agents in the

market, with the important exception of the agent who actually traded.

This customer has no better information than he did before the trade. This

is clearly the case for an informed trader, who possesses perfect knowl-

edge. But it is also true of an uninformed trader. The uninformed trader

who completes transaction k knows that the probability of informed trader

on that trade is not µ but zero. For this trader, then, δk = δk − 1. Whether

informed or uninformed, the agent’s ultimate effect of his trades is suc-

cinctly summarized in the aphorism, “The stock doesn’t know that you

own it” (Goodman 1967).

Alternatively the expectation of terminal value conditional on one’s

own contemplated trades does not depend on whether the trades are actu-

ally completed. For example, if the incoming order is a purchase by an

unidentified agent, everyone in the market will revise upward their expec-

tation of the terminal security value, except for the agent who actually sent

in the order.1

In a sense, the trading process creates superior information for unin-

formed traders. From the perspective of an uninformed agent who has just

made the kth trade, the dealers’ subsequent quote revisions are erroneous.

Once the trade is completed, any uninformed trader possesses information

superior to the dealers.

Does this create a manipulation opportunity? It is difficult to generally

characterize market manipulations, but one strategy that might be offered

up in example involves buying, moving the price upward in the process,

and selling at the higher price. Traders in the basic model have only one

chance to buy or sell, so there is no possibility of any such round-trip. But

suppose that this limitation is removed, and we let an uninformed buyer

immediately return to the market. Can he reverse his trade at a profit? (As

an exercise, verify that the answer is “no.”)

It is clear, however, that a sequence of uninformed trades in the

same direction will move the market’s conditional assessment of δ. This

may create a profit opportunity for an agent who knows that the trades

were uninformed, even though the agent is ignorant of the fundamental

value information. Suppose that the first two trades are uninformed sells.

The ask quote preceding the third trade is set to reflect the updated δ:
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δ3(Sell1, Sell2, Buy3) = δ(1 + µ)/[1 + (2δ − 1)µ] > δ0.

It therefore follows that EV − Ask3 > 0, where EV = δ0V + (1 + δ0)V ,

the unconditional expectation. Knowing that all trades to this point

(including his own) have been uninformed (ignorant of the true V ), EV is

also the buyer’s conditional expectation. In buying at the ask, he is paying

less than the security is worth.

What sort of agent might have the information required to behave in

this fashion? Orders typically reach a market through agents (brokers).

Brokers typically know something about their customers, and so may be

in a good position to judge if someone is uninformed. Trading ahead of

your customer is generally prohibited, but the strategy described only

requires trading after the customer.
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Order Flow and the Probability
of Informed Trading

Though the richest implications of the sequential trade models involve

the joint dynamics of trades and prices, inference can also be based solely

on the order arrival process. This chapter describes the procedure. First,

to illustrate the general features of the problem, we examine the statis-

tical properties of the numbers of buys and sells from the basic sequential

trade model. We next turn to a more flexible model that allows for event

uncertainty. The analysis is based on Easley, Kiefer, and O’Hara (1997)

and Easley, Hvidkjaer, and O’Hara (2002).

6.1 The Distribution of Buys and Sells

For the model described in section 5.2 the probabilities of a buy order

conditional on low and high outcomes are Pr(Buy |V ) = (1 − µ)/2 and

Pr(Buy |V ) = (1 +µ)/2. These probabilities are constant over successive

trades. Also, conditional on V, order directions are serially independent:

The probability of a buy does not depend on the direction of the last or

any prior orders. If we observe n trades, the conditional distributions of b

buys, Pr(b|n, V ) and Pr(b|n, V ), are binomial:

Pr(b|n, V ) = pb(1 − p)n−b

(

n

b

)

where p =
{

(1 − µ)/2 if V = V

(1 + µ)/2 if V = V .

(6.1)

The number of buys conditional only on n, then, is a mixture of binomials:

Pr (b|n) = δ Pr (b|n, V ) + (1 − δ) Pr (b|n, V ). (6.2)

56
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Figure 6.1. Distribution of the number of buy orders.

With no informed trading, the distribution is approximately normal. As

it increases, the component distributions become more distinct. With

µ = 0.1, the distribution is broader but still unimodal. With µ = 0.5, the

distribution is bimodal (see figure 6.1).

This suggests the properties of the data that will identify an estimate

of µ. With high µ, all days will tend to have one-sided order flow, a

preponderance of buys or sells, depending on the outcome of the value

draw. Although this model could be estimated by maximum likelihood,

actual applications are based on a modified version, described in the next

section.

6.2 Event Uncertainty and Poisson Arrivals

This model is a variation of the sequential trade model with event uncer-

tainty (section 5.4.4). The principal difference is that agents are not

sequentially drawn in discrete time but arrive randomly in continuous

time.

These events are modeled as a Poisson arrival process. Specifically,

suppose that the traders arrive randomly in time such that the probability

of an arrival in a time interval of length �t is λ�t where λ is the arrival

intensity per unit time, and the probability of two traders arriving in the

same interval goes to zero in the limit as �t → 0. Then,

• The number of trades in any finite interval of length �t is
Poisson with parameter θ = λ�t. (The Poisson distribution for a
random variable n with parameter θ has the form Pr (n) = e−θθn/n!
for n = 0, 1, . . . The mean and variance of this distribution are
En = Var(n) = θ.)

• The duration τ between two successive arrivals is exponentially
distributed: f (τ) = τe−λτ.
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Figure 6.2. Sequential trade model with event
uncertainty and Poisson arrivals.

• If two types of traders arrive independently with intensities λ1

and λ2, then the arrival intensity for undifferentiated traders, that
is, traders of any type, is λ1 + λ2.

See Ross (1996, pp. 59–65).

The arrival intensities for informed and uninformed traders are µ and ε.

The effect of these parameters on the arrival intensities of buyers and

sellers depends on the information state of the market. Figure 6.2 depicts

this dependence. In all states, uninformed buyers and sellers arrive with

intensity ε. If there is an information event that results in a low value

realization, for example, informed sellers appear, the total arrival intensity

of sellers is ε + µ.

On any day the unconditional numbers of buys and sells are jointly

distributed as a Poisson mixture:

Pr(b, s) = (1 − α)Pr(b; ε)Pr(s; ε)

+ α
[

δPr(b; ε)Pr(s; µ + ε) + (1 − δ)Pr(b; µ + ε)Pr(s; εx)
]

, (6.3)

where Pr(n; λ) denotes the probability of n arrivals when λ is the inten-

sity parameter. Figure 6.3 depicts this distribution for parameter values

α = 0.4, µ = ε = 10, (per day). The figure depicts the distribution both as a

contour map (with elevation corresponding to probability) and in three

dimensions (with probability on the vertical axis). In both depictions it is

clear that the dominant features are two lobes, corresponding to the days

when the order flow tends to be one-sided.

Pr(b, s) from equation (6.3) can be used to construct a sample likelihood

function. (Note that the buys and sells do not enter individually. The only

thing that matters is the total number on a given day.) All parameters may

be estimated by maximum likelihood. Most interest, however, centers on

a transformation of the parameters that corresponds to the probability of

informed trading (PIN ). This may be developed as follows.

The expected total order arrival intensity is 2ε + αµ, consisting of unin-

formed buyers, uninformed sellers, and (with probability α) informed

traders. PIN is the unconditional probability that a randomly chosen

trader on a randomly chosen day is informed. Thus,

PIN = αµ/(αµ + 2ε). (6.4)
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Figure 6.3. Joint probability density for the number of buy and sell
orders.

In the basic model, the probability of an informed trader is µ. This can

be obtained as a special case of the present model.1 When µ increases in

the basic model, daily order flows became increasingly one-sided (com-

pare figure 6.1). This is also true in the present model: An increase in PIN

will lead to more pronounced lobes in figure 6.3.

There interplay between α and µ in this model is interesting. These

parameters enter into PIN only as the product αµ, and so can offset each

other. We can obtain similar probability distributions for buys and sells

whether informed traders are many (high µ) and information events are

infrequent (low α) or informed traders are few (low µ) and information

events are frequent (high α). This is important for estimation. Order one-

sidedness in a sample may yield a relatively precise estimate for PIN.

Samples are typically less informative about µ and α individually. Esti-

mation errors in these two parameters are usually strongly negatively

correlated. If we are primarily interested in PIN, though, this impreci-

sion in the component parameters is a lesser concern. Moreover, PIN can

be constant over days even when there is variation in µ and α, as long as

it is offsetting. Thus, PIN might be stable even when high-µ/low-α days

are interspersed with low-µ/high-α days.

6.3 Discussion

Although the expanded model is more realistic than the simple version,

it remains highly stylized. Information events that can occur at most once

per day, events that always occur at the beginning of the day, two pos-

sible value realizations, etc., seem to push this model far away from

anything that might be found in reality. As a result, it is probably a

mistake to take the model’s estimates too literally. The details of PIN ’s
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construction, though, suggest that it is a meaningful measure of order flow

one-sidedness. There are certainly situations in securities markets where

this is sensibly related to information. If public news announcements, for

example, diffuse slowly, traders who can react before others may send

in orders to hit or lift quotes that are, given the new information, stale.

Until the stale quotes are eliminated, order flow will be one-sided. More

broadly, order flow may be one-sided in a stock with poor liquidity due

to order fragmentation. PIN may well pick up cross-sectional variation in

these mechanisms.

Although we have described the computation of PIN as an estimate

that falls out of a sequential trade model, its origins are somewhat more

modest. The economic content of a sequential trade model lies in its pre-

dictions about the joint dynamics of orders and prices, for example, the

effect of the orders on the quote midpoint and the spread, neither of

which directly affects PIN. PIN is determined solely by the order

arrival processes. These processes, though certainly reasonable, are model

assumptions rather than model predictions.

The obvious difference between the Roll and the sequential trade mod-

els is that the former focuses on price and the latter on orders. There is

also, however, a profound difference in how the time series are viewed.

The Roll model exists in a covariance stationary framework, where infor-

mation arrives uniformly and all relevant probability distributions are

time-invariant.

The setup in the sequential trade models, though, is neither stationary

nor ergodic. Stationarity is violated, for example, because even before the

day begins, we know that the distribution of the spread immediately prior

to the tenth trade differs from that prior to the ninth trade. Ergodicity is

violated because successive probabilities of buys, for example, always

depend on the outcome of the initial value draw.

The dynamics of the sequential trade model resemble an adjustment

process subsequent to a shock. This might be most accurate, for example,

in modeling trading leading up to a significant prescheduled corporate

news announcement. The covariance stationary framework of the Roll

model, on the other hand, would conform more closely to an aver-

age trading day in which diverse information arrives continually during

the day.

These differences also arise in estimation. The maximum likelihood

estimate of PIN relies on a sample consisting of independent path real-

izations. We assume that an initial draw is made at the beginning of the

day (literally) and that the process starts anew each day. Then the sample

proportions of buys on different days are independent and inference can

proceed.
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Strategic Trade Models

In the sequential trade framework, there are many informed agents, but

each can trade only once and only if he or she is “drawn” as the arriving

trader. Furthermore, if order size is a choice variable, the informed agent

will always trade the largest quantity. The Kyle (1985) model, discussed

in this chapter, differs in both respects. In the Kyle model, there is a single

informed trader who behaves strategically. She sets her trade size taking

into account the adverse price concession associated with larger quanti-

ties. Furthermore, She can, in the multiple-period version of the model,

return to the market, spreading out her trades over time.

The practice of distributing orders over time to minimize trade impact

is perhaps one of the most common strategies used in practice. With

decimalization and increased fragmentation of trading activity, market

participants have fewer opportunities to easily trade large quantities. In

the present environment, therefore, order-splitting strategies are widely

used by all sorts of traders (uninformed as well as informed). Although

the Kyle model allows for strategic trade, whereas the sequential trade

models do not, it is more stylized in some other respects. There is no bid

and ask, for example; all trades clear at an informationally efficient price.

7.1 The Single-Period Model

The terminal security value is v ∼ N (p0, �0). There is one informed trader

who knows v and enters a demand x. Liquidity (“noise”) traders submit

a net order flow u ∼ N (0, σ2
u), independent of v . The market maker (MM)

observes the total demand y = x + u and then sets a price, p. All of the

61
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trades are cleared at p. If there is an imbalance between buyers and sellers,

the MM makes up the difference.

Nobody knows the market clearing price when they submit their orders.

Because the liquidity trader order flow is exogenous, there are really only

two players we need to concentrate on: the informed trader and the MM.

The informed trader wants to trade aggressively, for example, buying a

large quantity if her information is positive. But the MM knows that if

he sells into a large net customer buy, he his likely to be on the wrong

side of the trade. He protects himself by setting a price that is increasing

in the net order flow. This acts as a brake on the informed trader’s desires:

If she wishes to buy a lot, she’ll have to pay a high price. The solution to

the model is a formal expression of this trade-off.

We first consider the informed trader’s problem (given a conjectured

MM price function) and then show that the conjectured price function

is consistent with the informed trader’s optimal strategy. The informed

trader conjectures that the MM uses a linear price adjustment rule

p = λy + µ where y is the total order flow: y = u + x. λ is an inverse

measure of liquidity. The informed trader’s profits are π = (v − p)x. Sub-

stituting in for the price conjecture and y yields π = x[v − λ(u + x) − µ].

The expected profits are Eπ = x(v − λx − µ). In the sequential trade

models, an informed trader always makes money. This is not true here.

For example, if the informed trader is buying (x > 0), it is possible that a

large surge of uninformed buying (u ≫ 0) drives the λ(u + x) + µ above v .

The informed trader chooses x to maximize Eπ, yielding x = (v −µ)/2λ.

The second-order condition is λ > 0.

The MM conjectures that the informed trader’s demand is linear in

v : x = α + βv . Knowing the optimization process that the informed trader

followed, the MM can solve for α and β: (v − µ)/2λ = α + βv for all v . This

implies

α = −µ/2λ and β = 1/2λ. (7.1)

The inverse relation between β and λ is particularly important. As liquid-

ity drops (i.e., as λ rises) the informed agent trades less. Now the MM must

figure out E[v |y ]. This computation relies on the following result, which

are also used later in other contexts.

Bivariate normal projection. Suppose that X and Y are bivariate nor-

mal random variables with means µX and µY , variances σ2
X and σ2

Y , and

covariance σXY . The conditional expectation of Y given X is E[Y |X = x] =
µY + (σXY /σ2

X )(x − µX ). Because this is linear in X , conditional expecta-

tion is equivalent to projection. The variance of the projection error is

Var[Y |X = x] = σ2
Y − σ2

XY /σ2
X . Note that this does not depend on x.

Here, given the definition of the order flow variable and the MM’s

conjecture about the informed traders behavior, y = u + α + βv , we

have Ey = α + βEv = α + βp0, Var(y ) = σ2
u + β2�0, and Cov(y , v ) = β�0.
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Using these in the projection results gives

E
[

v
∣
∣y
]

= p0 +
β
(

y − α − βp0

)

�0

σ2
u + β2�0

and

Var
[

v
∣
∣y
]

= σ2
u�0

σ2
u + β2�0

. (7.2)

This must equal p = λy + µ for all values of y , so

µ = αβ �0 − σ2
up0

σ2
u + β2�0

and λ = β �0

σ2
u + β2�0

. (7.3)

Solving Eqs. (7.1) and (7.3) yields:

α = p0

√

σ2
u

�0
; µ = p0; λ = 1

2

√

�0

σ2
u

; and β =

√

σ2
u

�0
. (7.4)

7.1.1 Discussion

Both the liquidity parameter λ and the informed trader’s order coefficient

β depend only on the value uncertainty �0 relative to the intensity of noise

trading σ2
u.

The informed trader’s expected profit is:

Eπ = (v − p0)2

2

√

σ2
u

�0
. (7.5)

This is increasing in the divergence between the true value and the uncon-

ditional mean. It is also increasing in the variance of noise trading. We

can think of the noise trading as providing camouflage for the informed

trader. This is of practical importance. All else equal, an agent trading

on inside information will be able to make more money in a widely held

and frequently traded stock (at least, prior to apprehension). How much

of the private information is impounded in the price? Using the expres-

sion for β in equation (7.2) gives Var[v |p] = Var[v |y ] = �0/2. That is, half

of the insider’s information gets into the price. This does not depend on

the intensity of noise trading.

The essential properties of the Kyle model that make it tractable arise

from the multivariate normality (which gives linear conditional expec-

tations) and a quadratic objective function (which has a linear first-order

condition). The multivariate normality can accommodate a range of modi-

fications. The following exercises explore modifications to the model that

still fit comfortably within the framework.

Exercise 7.1 (Partially informed noise traders) The noise traders in
the original model are pure noise traders: u is independent of v .
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Consider the case where the “uninformed” order flow is positively
related to the value: Cov(u, v ) = σuv > 0. We might think of u as
arising from partially informed traders who do not behave
strategically. Proceed as before. Solve the informed trader’s problem;
solve the MM’s problem; solve for the model parameters {α, β, µ, λ}
in terms of the inputs {σ2

u, �0, σuv }. Interpret your results. Show that
when Corr(u, v ) = 1, the price becomes perfectly informative.

Exercise 7.2 (Informed trader gets a signal instead of complete
revelation) The informed trader in the basic model has perfect
information about v . Consider the case where she only gets a signal s.
That is, she observes s = v + ε where ε ∼ N (0, σ2

ε ), independent of v .
Solve for the model parameters {α, β, µ, λ} in terms of the inputs,
σ2

u, �0, and σ2
ε . Interpret your results. Verify that when σ2

ε = 0,
you get the original model solutions.

Exercise 7.3 Around 1985, a Merrill Lynch broker noticed a
pattern of profitable trades originating from a Bahamas branch of
Bank Leu and began to piggyback his own orders on the Bank Leu
flow. Suppose that when the informed trader in the basic model
puts in an order x, her broker simultaneously puts in an order x,
with γx, with γ > 0. Solve for the model parameters (α, β, µ, λ) in
terms of the inputs, σ2

u, �0, and γ. It turned out that the Bank Leu
orders originated from a New York investment banker, Dennis
Levine, who subsequently pleaded guilty to insider trading (see
Stewart (1992)).

7.2 Multiple Rounds of Trading

A practical issue in market design is the determination of when trad-

ing should occur. Some firms on the Paris Bourse, for example, trade in

twice-per-day call auctions, others continuously within a trading session.

What happens in the Kyle model as we increase the number of auctions,

ultimately converging to continuous trading?

We will consider the case of N auctions that are equally spaced over

a unit interval of time. The time between auctions is �t = 1/N . The auc-

tions are indexed by n = 1, . . . N . The noise order flow arriving at the nth

auction is defined as �un. This is distributed normally, �un ∼ N (0, σ2
u�t)

where σ2
u has the units of variance per unit time. The use of the difference

notation facilitates the passage to continuous time. The equilibrium has

the following properties.

• The informed trader’s demand is �xn = βn(v − pn−1)�tn, where βn

is trading intensity per unit time.
• The price change at the nth auction is pn = pn−1 + λn(�xn + �un).
• Market efficiency requires pn = E[v |yn] where yn is the cumulative

order flow over time.
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In equilibrium the informed trader “slices and dices” her order flow,

distributing it over the N auctions. This corresponds to the real-world

practice of splitting orders, which is used by traders of all stripes, not just

informed ones.

Recall that in the sequential trade models, orders are positively auto-

correlated (buys tend to follow buys). Does a similar result hold here? Is

autocorrelation a consequence of the informed trader’s strategic behavior?

There is an argument supporting this conjecture that is intuitive and com-

pelling at first glance. The informed trader splits her orders over time,

and so tends to trade on the same side of the market. If her information

is favorable v > p0, she will be buying on average; with negative infor-

mation, she’ll be selling. This establishes a pattern of continuation in her

orders, and as a result Corr(�xi , �xj ) > 0 for any pair of auctions i and j

we might care to examine. Total order flow, being the sum of her demand

and that of the uninformed, is thus the sum of one series that is positively

autocorrelated and one that is uncorrelated. We’d expect the positive auto-

correlation to persist in the total, diluted perhaps by the uncorrelated

noise, but present nonetheless.

In fact, however, total order flow is uncorrelated. Correlation would

imply that order flow is at least partially predictable. Since order flow and

price changes are linearly related (the λn are known at the start of the day),

predictability in the former is equivalent to predictability in the latter.

Autocorrelation in price changes is ruled out by market efficiency. More

formally, the conditional expectation of the incremental order flow is:

E[�yn|yn−1] = E[�un + �xn|yn−1] = E[βn(v − pn−1)�t|yn−1] = 0.

The first equality is definitional; the second holds because the noise order

flow has zero expectation. The third equality reflects the market efficiency

condition that E[v |yn−1] = pn−1. From a strategic viewpoint, the informed

trader hides behind the uninformed order flow. This means that she trades

so that the MM can’t predict (on the basis of the net order flow) what she

will do next.

Figure 7.1 depicts the market depth parameter over time as a function

of the number of auctions. In the sequential trade models, manipulation

by an uninformed trader is not generally profitable (section 5.6). A similar

result holds here. Huberman and Stanzl (2004) show that the linear price

schedules of the Kyle model do not allow manipulation and also that only

linear price schedules have this property.

7.3 Extensions and Related Work

The Kyle model lies near the center of a large family of theoretical ana-

lyses. The following list is suggestive of the directions, but far from com-

prehensive. Back (1992) develops continuous time properties. Back and
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Figure 7.1. Market impact and number of auctions.

Baruch (2004) explore the links between the strategic and sequential

trade models. Notably, in their common framework, the informed agent

trades randomly in continuous time. Admati and Pfleiderer (1988) incor-

porate strategic uninformed traders (also see Foster and Viswanathan

1990). Subrahmanyam (1991a) considers risk-averse market makers and

informed traders. Spiegel and Subrahmanyam (1992) model the unin-

formed agents as rational risk-averse hedgers. Analyses that feature mul-

tiple securities include Caballe and Krishnan (1994) and Subrahmanyam

(1991b) (also see Admati (1985)). Subrahmanyam considers the case of

a multiple security market that includes a basket security, for example,

a stock index futures contract or an index exchange traded fund. The

diversification in an index greatly mitigates firm-specific information

asymmetries, making index securities generally cheaper to trade. Holden

and Subrahmanyam (1992, 1994), Foster and Viswanathan (1996), and

Back, Cao, and Willard (2000) consider multiperiod models with multiple

informed traders.
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A Generalized Roll Model

8.1 Overview

Following the economic analysis, we now turn to empirical examina-

tion of asymmetric information by developing a generalization of the Roll

model. One sensible first step is to allow the efficient price to be par-

tially driven by the trade direction indicator variable. A number of models

along these lines have been proposed. The developments in this chapter

are compatible with and can be viewed as special cases of most of these

models. The phrase “generalized Roll model” is not in common use. It

is used here to emphasize the roots of the present developments in the

Roll model.

Although many of these models are estimated jointly over prices and

trades (the qt), the present chapter discusses only univariate specifications

for price changes, deferring the multivariate models to the next chapter.

One reason for this is that some general features of these models are best

encountered in a univariate setting. In particular, it is easier to see from the

univariate representation of a bivariate model the specification problems

that almost certainly plague (but in a more subtle fashion) the multivari-

ate analyses. A second consideration is that although we have good recent

data on U.S. equity markets that allow us to infer qt , this is not univer-

sally the case. In many data samples and markets, only trade prices are

recorded.

8.2 The Structural Model

The efficient price still behaves as a random walk, but the increments have

two components.

67
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mt = mt−1 + wt
(8.1)

wt = λqt + ut .

Here, λqt reflects the information content of the time-t trade (λt > 0), and

ut impounds public information, with Corr(qt , ut ) = 0. More precisely,

because trades are often reported, ut is better described as reflecting non-

trade public information. We follow the earlier convention that the actual

trade price is pt = mt + cqt , that is, the dealer recovers costs of c. In this

context, c is interpreted as noninformational costs.

The trade is at the ask if qt = +1, and at the bid if qt = −1, which imply

that the ask and bid are mt−1 + c + λ + ut and mt−1 − c − λ + ut . Thus, the

bid and ask are set symmetrically about mt−1 + ut . The spread is 2(c + λ),

where c reflects the noninformational fixed costs of the trade (clearing

costs, clerical costs, etc.) and λ reflects the adverse selection cost. In the

spirit of the asymmetric information models, λ is the price impact nec-

essary to balance expected gains from trading against uninformed agents

with expected losses to informed agents.

These conventions suggest the following timing. Immediately after the

trade at t − 1, the efficient price is mt−1. Then public information arrives

as the realization of ut . The dealer sets the bid and ask symmetrically

about mt−1 + ut . Then a trade arrives (a realization of qt), and the efficient

price is updated to mt .

8.3 Statistical Representations

We now turn to reduced-form representations of the model. The model

has three parameters {λ, c, σ2
u}, and two sources of randomness: ut and

qt . Inference is based on the properties of the observed price changes. In

terms of the structural model:

�pt = pt − pt−1 = c(qt − qt−1) + λqt + ut . (8.2)

The price change autocovariances are:

γ0 = E(�pt)
2 = c2 + (c + λ)2 + σ2

u
(8.3)

γ1 = E(�pt�pt−1) = − c(c + λ).

All autocovariances of order two or more are zero. This implies (via

the Wold theorem and the Ansley et al. (1977) result) that the price

changes can be represented as the MA(1) process �pt = εt + θεt−1.

Section 4.2 discussed determination of the moving average parameters

from the autocovariances.

Neither the two autocovariances {γ0, γ1} nor the two MA parameters

{θ, σ2
ε } suffice to identify the three structural parameters of the model
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{λ, c, σ2
u}. One option is to fix one of the structural parameters. Setting

λ = 0 returns us to the original Roll model (no asymmetric information). If

σ2
u = 0, then we are left with only asymmetric information (no public infor-

mation). Setting c = 0 eliminates noninformational costs. It is sometimes

useful to consider these special cases, but from an economic perspective

they are quite restrictive.

One important parameter of the structural model can be identified

without further restrictions. From (8.1) the variance of the efficient price

changes is Var(wt) = σ2
w = λ2 + σ2

u. Using (8.3), this same quantity can be

computed as γ0 + 2γ1. It will later be shown that the identification of σ2
w

is a general result, extending to multiple lags and multivariate and/or

multiple-price models.

The intuition for this property lies in the behavior of long-term returns.

σ2
w is the variance per unit time of the random-walk component of the

security price. This variance is time-scaled: If we use a longer interval to

compute the change, the variance is simply multiplied by the length of

the interval: Var(mt − mt−k ) = kσ2
w . But over long periods, microstructure

effects become relatively less important. Most of the long-term dynamics

in pt are attributable to mt . That is, as k gets large,

σ2
w = Var[mt − mt−k ]

k
≈ Var[pt − pt−k ]

k
,

irrespective of microstructure effects. Identification of parameters other

than σ2
w , however, requires more structure or more data.

8.4 Forecasting and Filtering

In the basic Roll model the price forecast (based on a linear projection)

was shown to be

ft ≡ lim
k→∞

E∗[pt+k |pt , pt−1, . . .] = E∗[pt+1| pt , pt−1, . . .] = pt + θεt . (8.4)

This is the price forecast for the generalized Roll model as well, because

it has the same MA(1) representation. The earlier discussion emphasized

that although ft has uncorrelated increments (like a martingale), it is not

generally equal to mt from the structural model. Instead, it is what is

usually called a filtered state estimate, the expectation of an unobserved

variable conditional on the history of observations. In the present case,

ft = E∗[mt |pt , pt−1, . . .].

We can demonstrate this by using the structural model to compute ft

and then showing that this is equal to pt + θεt . First, because mt = pt − cq,

ft = pt − cE[qt |pt , pt−1, . . .]. Next, because the price history is equivalent

to the innovation history, ft = pt − cE[qt |εt , εt−1, . . .]. We will consider

projections of the form E∗[qt |εt , εt−1, . . . ] = β0ε1 + β1εt−1 + β2εt−2 + . . .
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Because the εt values are uncorrelated, βi = Cov(qt , εt−i)/σ
2
ε . The

Cov(qt , εt−i) can be computed as follows. There are two ways of rep-

resenting �pt , the statistical and the structural, and they must agree:

εt + θεt−1 = (c + λ)qt − cqt−1 + ut . (8.5)

Rearranging this to isolate εt gives εt = (c + λ)qt − cqt−1 + ut − θεt−1.

From this it is clear that Cov(qt , εt) = c + λ and Cov(qt , εt−k ) = 0 for k ≥ 1.

The expectation then reduces to E∗[qt |εt , εt−1, . . . ] = [(c + λ)/σ2
ε ]εt . Using

this,

E∗[mt |pt , pt−1, . . .] = pt − c

(
c + λ

σ2
ε

)

εt = pt + θεt .

The second equality follows from equating the first-order autocovariance

implied by the structural model in (8.3) to that implied by the statistical

model: −c(c + λ) = θσ2
ε .

8.5 The Pricing Error: How Closely Does pt Track mt?

We’ve motivated the c parameter in the model as a cost variable. If cus-

tomers come in and trade against dealer bids and asks, then c is the amount

by which a customer buyer overpays relative to the efficient price (and

similarly for a customer seller). This does not imply that terms of trade or

unfair, or that dealers make profits after their costs, but it does imply a clear

distinction between those who supply liquidity and those who demand it.

Many markets, though, don’t have such a clean dichotomy between

dealers and customers. In limit order markets, bids and asks are set by

other customers. Sometimes we consider the customers who supply liq-

uidity as quasi-dealers, that is, dealers in all but name. More generally,

though, a customer in such a market has a choice between using a mar-

ket or a limit order and (if a limit order) how it is to be priced. In such

markets, the dealer/customer or liquidity supplier/demand roles become

blurry. Even when we can’t directly impute a cost to either side in trade,

though, it is still of interest to know how closely the trade prices track the

efficient price. This is measured by Var(st) ≡ σ2
s where st = pt − mt . The

structural model here implies s = cqt , so σ2
s = c2.

Unfortunately, because c is not identified by the data, σ2
s is not identi-

fied either. However, it does possess a lower bound. To see this, note first

that st = pt − mt = (pt − ft) − (mt − ft). Because ft is a linear projection of

mt on {pt , pt−1, . . .}, the filtering error mt − ft is uncorrelated with pt − ft .

Therefore

σ2
s = Var(pt − ft) + Var(mt − ft). (8.6)

The first term on the right-hand side does not depend on the structural

identification and is easily computed as Var(pt − ft) = Var(−θεt) = θ2σ2
ε .
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Now we turn to the second term, essentially seeking the structural

identification for which it is minimized.

Consider the reduced-form and structural models under the restric-

tion σ2
u = 0, or equivalently that ut = 0 for all t. In this case, the only

randomness in the structural model arises from qt , and equation (8.5)

establishes an exact correspondence between the two representations and

their disturbances. That is, if εt + θεt = (c + λ)qt − cqt−1, then we can set

εt = (c + λ)qt for all t and θ = − c/(c + λ). The filtered estimate of mt then

becomes ft = pt + θεt = pt − cqt = mt . So under the restriction σ2
u = 0, the

filtered estimate is exact, and Var(mt −ft) = 0. As a variance cannot be neg-

ative, this establishes that under any structural identification, σ2
s cannot

fall below σ2
s = θ2σ2

ε . In terms of the structural parameters, this is

σ2
s = 1

2

[

c2 + (c + λ)2 + σ2
u −

√
(

λ2 + σ2
u

) [

(2c + λ)2 + σ2
u

]
]

. (8.7)

It is easy to exceed this lower bound, that is, to find a set of struc-

tural parameters for which σ2
s = σ2

s. For the generalized Roll model, the

lower bound is attained when all information is trade-related. In the orig-

inal model, all information is public, and σ2
s = −γ1 = −θσ2

ε > σ2
s = θ2σ2

ε ,

because −1 < θ < 0.

There does not exist an upper bound for σ2
s . The problem is that there

are many alternative structural models that are observationally equivalent

(have the same θ and σ2
ε ). For example, consider pt = mt−2 + cqt . Here,

trade price is driven by an efficient price that is two periods “stale.” Then

st = pt−mt = −wt − wt−1 + cqt . Relative to the original model, σ2
s is inflated

by 2σ2
w . One can make economic arguments that it is unlikely that the

price is extremely lagged relative to beliefs. Were quotes set relative to

yesterday’s efficient price, customers would be unwilling to trade on one

side of the market. Arguments like this might justify at least a provisional

assumption about how stale the price is likely to be, but they must be based

on economics rather than statistics. Statistical analysis does not provide

an upper bound.

Finally, σ2
w is the random-walk variance per unit time. For example, if

the model is estimated over one-minute intervals, then σ2
w is variance per

minute. It may be rescaled, of course, to give an implied hourly or daily

random-walk variance (see exercise 8.3). The pricing error variance σ2
s , on

the other hand, is the variance of a difference between two level variables

at a point in time. It does not have a time dimension.

8.6 General Univariate Random-Walk
Decompositions

Up to now, the chapter has explored the correspondence between a

known structural model and its statistical representations. This was
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useful for illuminating what we could (and could not) learn about the

former from the latter. Here we ask what can be inferred starting from a

moving average representation of price changes that is not of order one

but is instead of arbitrary order: �pt = θ(L)εt . The only economic structure

we impose on the prices is pt = mt + st where mt follows a random walk

(mt = mt−1 + wt) and st is (as in the preceding section) a tracking error that

may be serially correlated and partially or completely correlated with wt .

The observable variable, pt , is thus decomposed into a random-walk

and a covariance-stationary error. Random-walk decompositions were

originally developed and applied in macroeconomic settings, where the

random-walk component is considered the long-term trend and the

stationary component impounds transient business cycle effects. This

literature mostly employs the trend/cycle terminology. The treatment

here follows the historical development of this literature. I begin with

Beveridge and Nelson (1981) and follow with the more general case

described in Watson (1986). Later chapters explore multivariate exten-

sions and cointegration.

In macroeconomics applications, random-walk decompositions are

usually called permanent/transitory. The random-walk terminology is

used here to stress the financial economics connection to the random-walk

efficient prices. The permanent/transitory distinction is in some respects

more descriptive, however, of the attributions that we’re actually making.

From a microstructure perspective, the key results expand on those

demonstrated for the generalized Roll model: The moving average rep-

resentation for the price changes suffices to identify the variance of the

implicit efficient price σ2
w , the projection of the efficient price on past price

changes, and a lower bound on the variance of the difference between the

transaction price and the efficient price. The development in this section

is heuristic and intuitive. The appendix gives a more formal development.

The starting point is the price forecast ft :

ft ≡ lim
k→∞

E∗[pt+k | pt , pt−1, . . .]

= pt + E∗[�pt+1|εt , εt−1, . . .] + E∗[�pt+2|εt , εt−1, . . .] + · · ·

= pt +
∞
∑

k=0

θk+1εt−k +
∞
∑

k=0

θk+2εt−k +
∞
∑

k=0

θk+3εt−k + · · · (8.8)

= pt +





∞
∑

j=0

θj+1



 εt +





∞
∑

j=0

θj+2



 εt−1 +





∞
∑

j=0

θj+3



 εt−2 + · · ·

With this construction, the first-difference of ft is

�ft = �pt +





∞
∑

j=0

θj+1



 εt − θ1εt−1 − θ2εt−2 − · · ·
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=
∞
∑

j=0

θjεt−j +





∞
∑

j=0

θj+1



 εt − θ1εt−1 − θ2εt−2 − · · · (8.9)

=





∞
∑

j=0

θj



 εt = θ(1)εt .

So the increments to ft , being a constant multiple of an uncorrelated series,

are themselves uncorrelated. Although this is not a sufficient condition

for ft to be a martingale, it is a necessary one. Is it reasonable, then, to

simply assert that ft is the efficient price?

If ft = mt then writing mt = mt−1 + wt establishes a correspondence:

wt = θ(1)εt . Its variance is

σ2
w = θ(1)2σ2

ε . (8.10)

This particular result is invariant to identification. The discrepancy

between efficient and transaction prices is st = pt − mt . Using equation

(8.8),

st = C0εt + C1εt−1 + C2εt−2 + · · · where Ci = −
∞
∑

j=i+1

θj . (8.11)

From this,

σ2
s =

∞
∑

i=0

C2
i σ2

ε . (8.12)

Equivalently, we may express st in terms of the wt: st = A0wt + A1wt−1 +
A2wt−2 + · · · , where Ak = −θ(1)−1∑∞

j=k+1 θj .

This has all followed from assuming that ft = mt , in which case st is a

function of current and past wt . But suppose that st , while still zero-mean

and covariance stationary, is uncorrelated with wt :

st = ηt + B1ηt−1 + B2ηt−2 + · · · ,

where {ηt} is a white-noise process uncorrelated with {wt}. This is more
complicated than the previous case. If the moving averages are finite, it is

still possible to solve for the Bs and σ2
η in terms of the θs and σ2

ε , but the

computation involves solving a polynomial equation. Rather than pursue

this case further, though, we will move right on to the general case where

st contains terms in wt and terms uncorrelated with wt :

st = (A0wt + A1wt−1 + · · ·) + (ηt + B1ηt−1 + · · ·). (8.13)

This model is now unidentified, but as with the generalized Roll model,

we have two substantive results. First, the variance of the efficient price

increments, σ2
w , is the same for all feasible sets of parameters. We have

already determined this for one particular set, the case where st involves
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only terms in w t . Second, σ2
s computed under this restriction is a lower

bound. The chapter appendix develops these results in greater depth.

Hasbrouck (1993) establishes the lower bound result in a microstruc-

ture setting. Independently, Eckbo and Liu (1993) arrive at the result in a

macroeconomic context.

This discussion has proceeded from the starting point of a MA model

for price changes �pt = θ(L)εt . Starting from an autoregressive repre-

sentation, φ(L)�pt = εt , we can invert to obtain the moving aver-

age (by computing φ(L) = θ(L)−1). This is not, however, necessary if

we’re simply interested in σ2
w . Because φ(1) = θ(1)−1, σ2

w =φ(1)−2σ2
ε (see

exercise 8.2). Similarly, with a mixed ARMA like φ(L)�pt = θ(L)εt ,

σ2
w = φ(1)−2θ(1)2σ2

ε .

Exercise 8.1 (The Roll model with stale prices) The beliefs of market
participants at time t are summarized in mt , where mt = mt−1 + wt .
But due to operational delays, trades actually occur relative to a
lagged value: pt = mt−1 + cqt . What are the autocovariances of �pt?
What is its moving average representation?

Exercise 8.2 (Lagged price adjustment, without a bid-ask spread)
Delays may also lead to price adjustments that do not instantaneously
correct. Suppose mt = mt−1 + wt , but pt = pt−1 + α(mt − pt−1), with
0 < α < 1. Show that the autoregressive representation for price
changes is φ(L)�pt = εt where φ(L) = (1 − (1 − α)L) and εt = αwt .
Verify that φ(1)−2σ2

ε = σ2
w .

Exercise 8.3 For log price changes over five-minute
intervals, we estimate a second-order moving average model:
�pt = εt − 0.3εt−1 + 0.1εt−2, where σ2

ε = 0.00001.

a. What is the random-walk standard deviation per five-minute
interval?

b. Assuming a six-hour trading day, what is the implied random-
walk standard deviation over the day?

c. Compute the lower bound for the standard deviation of the pricing
error.

8.7 Other Approaches

There is a long tradition in empirical finance of measuring market

efficiency (informational and operational) by measuring or assessing

how closely security prices follow a random walk. Statistical measures

commonly focus on autocovariances, autocorrelations, or variance ratios.

The autocovariances and autocorrelations of a random-walk are zero

at all nonzero leads and lags. This makes for a clean null hypothesis, and

there exists a large number of tests to evaluate this null. But if a random

walk is rejected (and in microstructure data, it usually is), how should
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we proceed? Statistical significance (rejecting the null) does not imply

economic significance. It is difficult to reduce a set of autocovariances

and autocorrelations to a single meaningful number.

One approach is to compare the variances of returns computed at dif-

ferent intervals or endpoints. It was noted before that transaction price

returns computed over long horizons are dominated by the random-walk

component. A variance ratio compares the variance per unit time implied

by a long horizon with a variance per unit time computed from a short

horizon:

VM ,N = Var(pt − pt−M )/M

Var(pt − pt−N )/N
, (8.14)

where M , N > 0. If pt follows a random walk, VM ,N = 1 for all M and N.

Usually, though if microstructure effects dominate short-horizon returns,

then typically, with M < N , VM ,N > 1. That is, microstructure effects

inflate the variance per unit time in the short run. If we set N large, V M ,N

generally declines as M approaches N from below. In a sense, then, this

can summarize how quickly (in terms of return interval) the prices come

to resemble a random walk.

As a single summary statistic, though, V M ,N is problematic. There are

few principles to apply in choosing M and N. Furthermore, negative auto-

correlation at some lags can be offset by positive correlation at others,

resulting in Vs near unity, even though the process exhibits complicated

dependent behavior.

Variance ratios are also computed when the horizons are the same,

but endpoints differ. In some markets, for example, the first and last

trades of the day occur using different mechanisms, Typically, the opening

price (first trade) is determined using a single-price call, and the closing

price is that last trade in a continuous session. The relative efficiencies

of the two mechanisms are sometimes assessed by variance ratios like

Var(p
Open
t − p

Open
t−1 )/Var(pClose

t − pClose
t−1 ). Studies along these lines include

Amihud and Mendelson (1987, 1991), Amihud, Mendelson, and Murgia

(1990), and Ronen (1998).

Appendix: Identification in Random-Walk
Decompositions

This discussion provides more detail on the results described in

section 8.6. Let pt = mt + st where mt = mt−1 + wt and st = A(L)wt + B(L)ηt ,

where wt and ηt are uncorrelated. Using the lag operator, the price

changes are:

�pt = (1 − L)pt = (1 − L)mt + (1 − L)st

= [1 + (1 − L)A(L)]wt + (1 − L)B(L)ηt . (8.15)

The corresponding MA model is �pt = θ(L)εt .
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Subsequent developments rely on a device called the autocovariance

generating function (AGF). For a covariance-stationary univariate time

series {xt} with autocovariances γk = Cov(xt , xt−k ) for k = · · · −2, −1, 0, 1,

2, . . . the AGF is:

γx(z) = · · · + γ−2z−2 + γ−1z−1 + γ0 + γ1z + γ2z2 + · · · (8.16)

For a univariate time series there is a symmetry γk = γ−k . Furthermore, if

{xt} and {yt} are mutually uncorrelated at all leads and lags, the autoco-

variance function of the series {xt + yt} is given by gx+y (z) = gx (z) + gy (z).

Although the AGF may initially seem like nothing more than a way to tab-

ulate autocovariances, it can also be used to compute the autocovariances.

Specifically, if {xt} possesses a moving average representation xt = θ(L)εt ,

then gx (z) = θ(z−1)θ(z)σ2
ε . Hamilton (1994, section 3.6) discusses the AGF

in greater depth.

Returning to the problem at hand, from the moving average repre-

sentation for price changes, g�p(z) = θ(z−1)θ(z)σ2
ε . From the structural

representation

g�p(z) =
[

1 − (1 − z−1)A(z−1)
]

[1 − (1 − z)A(z)] σ2
w

+
[

(1 − z−1)B(z−1)
]

[(1 − z)B(z)] σ2
η. (8.17)

Equating these two expressions and evaluating both sides at z = 1 gives

σ2
w = [θ(1)]2σ2

ε , where θ(1) = 1 + θ1 + θ2 + · · · If price changes are originally

expressed in autoregressive form, we don’t need to compute the full mov-

ing average. From φ(L)�pt = εt , we can go right to σ2
w = [φ(1)]2σ2

ε , where

φ(1) is the sum of the autoregressive coefficients.

If the pricing error is driven entirely by the information innovation

wt , st = A(L)wt . Equating the structural and statistical representations for

�pt gives

θ(L)εt = [1 − (1 − L)A(L)]wt . (8.18)

Both εt and w t are white-noise processes. The correspondence suggests

that wt = θ(1)εt . Using this and solving for A(L) gives A(L) = (1 − L)−1[θ(L) −
θ(1)]θ(1)−1. Expanding (1 − L)−1 about L = 0 and multiplying through

gives:

A(L) = θ(1)−1(−θ1 − θ2 − θ3 − · · · ) + θ(1)−1(−θ2 − θ3 − · · · )L

+ θ(1)−1(−θ2 − θ3 − · · · )L2 + · · · (8.19)

The implied A(L) coefficients are identical to those given in equation (8.11)

and the related discussion.
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If the pricing error is uncorrelated with w t at all leads and lags,

st = B(L)ηt . The equivalence of the autocovariance generating functions

in this case implies θ(z−1)θ(z)σ2
ε = σ2

w + (1 − z−1)B(z−1)(1 − z)B(z). If the

order of θ(L) is n and the coefficients (or estimates) are known, then the

B coefficients may be determined by solving the nth-order polynomial

equation.
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Multivariate Linear Microstructure
Models

Although the trade price is usually the single most important variable in

a microstructure analysis, other variables can help explain its dynamics.

These include orders, trades, prices of the same security in other markets,

prices of related securities, and so on. Inclusion of these variables can

enhance the forecasting power of a model. Under certain assumptions,

the multivariate models support an attribution of this forecasting power,

essentially identifying price changes with particular sources of informa-

tion. This chapter discusses models where there is one price and one or

more supplementary variables. The principal qualification on these vari-

ables is that they should not be cointegrated with (“very closely related

to”) the price under consideration. Models with cointegrated prices are

discussed in the following chapter. For the present material, Hamilton

(1994, Ch. 10 and 11) discusses general modeling aspects; Hasbrouck

(1988, 1991a, 1991b and 1993) describes microstructure applications.

We are interested in analyzing the dynamics of an n × 1 vector-valued

time series yt = [�pt x ′
t]

′ where the first element is the price change,

xt is an (n − 1) × 1 vector of additional variables, and [ ]′ denotes matrix

transposition. Placing the price change first is simply an expositional sim-

plification and carries no implications that this variable is first in any

causal sense. The chapter treats the general case but uses a particular

structural model for purposes of illustration. The structural model is a

bivariate model of price changes and trade directions: yt = [�pt qt]
′.

9.1 Modeling Vector Time Series

The basic descriptive statistics of a vector stochastic process {yt} are

the process mean µ = E[yt] and the vector autocovariances. The vector

autocovariances are defined as the matrices

78
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Ŵk = E( yt − E[yt])(yt−k − E[yt])
′ for k = . . .−2, −1, 0, +1, +2, . . . (9.1)

In suppressing the dependence of µ and Ŵk on t, we have implicitly

invoked an assumption of covariance stationarity. Note that although a

univariate autocorrelation has the property that γk = γ−k , the correspond-

ing property in the multivariate case is Ŵk = Ŵ′
−k .

If µ = 0, or equivalently if the yt have been de-meaned, then by a multi-

variate version of the Wold theorem, there exists a vector moving average

(VMA) representation of the process:

yt = εt + θ1εt−1 + θ2εt−2 + · · · = (I + θ1L + θ2L2 + · · ·) εt = θ(L)εt , (9.2)

where εt is a vector white-noise process with Eεt = 0, Var(εt) = Eεtε
′
t =�,

and Eεtε
′
t−k = 0 for k �= 0. The θi are the n × n coefficient matrices, and θ(L)

is a matrix lag polynomial.

As in the univariate case, for purposes of forecasting and estimation it

is often useful to express a multivariate process in terms of its own lagged

values. The vector autoregression (VAR) corresponding to (9.2) is:

yt = φ1yt−1 + φ2yt−2 + · · · + εt , (9.3)

where the φi are the n × n coefficient matrices. This representation exists if

the VMA is invertible. In principle, invertibility can be verified by examin-

ing the roots of the VMA determinantal equation (Fuller (1996), theorem

2.8.2, p. 78). In practice, the VMA representation is constructed from the

VAR, that is, we’re usually going in the other direction. Nevertheless, we

will see in later chapters structural models that are clearly noninvertible.

To compute the VAR representation from the VMA, we note that from

equation (9.2), θ(L)−1yt = εt , and from (9.3), (I − φ1L − φ2L2 − · · ·) yt = εt .

So we can determine the φi by taking a series expansion of θ(L)−1.

We now describe a particular structural model.

9.2 A Structural Model of Prices and Trades

The univariate models discussed earlier focused on price changes. The

model described here also includes order dynamics. In the earlier models,

the trade directions (the qt ) are generally assumed to be serially uncorre-

lated. In reality trades in most markets are positively autocorrelated, for

example, buys tend to follow buys. One way of modeling this is to allow

qt to follow the MA(1) process:

qt = vt + βvt−1, (9.4)

where β > 0 and vt is a white-noise process. Note that because qt = ±1, the

vt will be serially uncorrelated, but not independent (see section 4.6).
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In the generalized Roll model, qt appears in two roles. First, it simply

determines whether the trade occurs at the bid or ask. Second, it drives

the revision in the efficient price due to inferred private information.

Although the point was not emphasized in the discussion of the origi-

nal model, qt was unforecastable: E[qt |qt−1, qt−2, . . . ] = 0. This is not true

in the present case. Here, the update to traders’ beliefs accompanying the

realization of qt is the innovation qt − E[qt |qt−1, qt−2, . . . ] = vt . The incre-

ment to the efficient price is therefore driven by the order innovation:

mt = mt−1 + wt where wt = ut + λvt . (9.5)

Using pt = mt + cqt and equation (9.4), the price changes may be written:

�pt = ut + λvt + c[(vt + βvt−1) − (vt−1 + βvt−2)]. (9.6)

By stacking equations (9.4) and (9.6) to form a matrix equation:

[

�pt

qt

]

=
[

1 c + λ

0 1

][

ut

vt

]

+
[

0 c(β − 1)

0 β

]

×
[

ut−1

vt−1

]

+
[

0 −cβ

0 0

][

ut−2

vt−2

]

. (9.7)

Equation (9.7) is a VMA, but it is not in a form like equation (9.2)

where the coefficient of the current disturbance is the identity matrix. To

accomplish this normalization, define

εt = B

[

ut

vt

]

where B =
[

1 c + λ

0 1

]

Then using [ut vt]
′ = B−1εt , the model may be put in the form of

equation (9.2) with

θ1 =
[

0 −c − βλ

0 β

]

; θ2 =
[

0 −cβ

0 0

]

; θk = 0 for k > 2. (9.8)

Finally,

�≡ Var(εt ) =
[

σ2
u + (c + λ)2 σ2

v (c + λ) σ2
v

(c + λ) σ2
v σ2

v

]

. (9.9)

The VAR representation (equation (9.3)) may be computed by series

expansion of θ(L)−1. It is of infinite order. The leading coefficients are:

φ1 =
[

0 −c(1 − β)

0 β

]

; φ2 =
[

0 −cβ2

0 −β2

]

;

(9.10)

φ3 =
[

0 cβ3

0 β3

]

; φ4 =
[

0 −cβ4

0 −β4

]

; · · ·
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Because |β| < 1, the coefficients are decreasing in magnitude.

If β = 0, the structural model is identical to the generalized Roll model

discussed in chapter 8. Even in this case, though, the multivariate statisti-

cal models discussed in the present section will differ from the univariate

models considered earlier.

The structural model does not exhibit the full range of dynamic inter-

actions that VAR models can accommodate. Causality in this model is

one-way: from trades to prices. Other mechanisms, however, might trans-

mit effects in the opposite direction. A strong price movement due to

public information, for example, might draw in momentum traders buying

on what they perceive to be an emerging price trend.

9.3 Forecasts and Impulse Response Functions

As in the univariate case, the forecasts implied by the model are interesting

as descriptive tools but also as estimates of market participants’ beliefs.

Forecasts are usually computed from autoregressive representations, but

to stress the latter interpretation, we will work initially from the moving

average form. From equation (9.2),

E∗[yt+k |yt , yt−1, . . .] = E∗[yt+k |εt , εt−1, . . .]

= θkεt + θk−1εt−1 + θk−2εt−2 + · · · for k ≥ 0

(9.11)

The first equality reflects our ability to recover the disturbances recur-

sively from the VAR form of the model (using equation (9.3)). The second

equality is a consequence of the fact that E[εt+k |εt , εt−1, . . . ] = 0 for k ≥ 1.

The price forecast is of particular interest:

ft ≡ lim
k→∞

E∗[pt+k |pt , pt−1]

= pt +
∞
∑

k=1

E∗ [�pt+k |pt , pt−1

]

= pt +





∞
∑

j=0

[θj+1]1



 εt +





∞
∑

j=0

[θj+2]1



 εt−1 +





∞
∑

j=0

[θj+3]1



 εt−2 + · · ·

(9.12)

where [θj+1]1 denotes the first row of matrix θj+1. As in the univariate case,

it can be verified that

�ft =





∞
∑

j=0

[θj ]1



 εt .
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Thus, ft has uncorrelated increments. In general, ft = E∗[mt |yt , yt−1, . . . ],

the projection of mt on the history of the model variables, but except in

special cases ft �= mt .

This forecast procedure involves stepping the model ahead beyond its

current (actual, observable) state. We may also be interested in forecast-

ing subsequent to a hypothetical innovation, for example, a typical trade

(or a trade that we may be contemplating). The timing convention here

is that we are forecasting conditional on yt−1, yt−2, . . . (or, equivalently,

εt−1, εt−2), and an εt that we specify.

This sort of forecast can also be used as a descriptive tool for illustrat-

ing the behavior of an estimated model. The dynamic structure usually

emerges most clearly when we examine an innovation at time zero and

also set to zero all prior innovations. The resulting forecast is called the

impulse response function:

ψs(ε0) ≡ E∗[ys|ε0, ε−1 = ε−2 = · · · = 0] for s ≥ 0. (9.13)

ψs(ε0) summarizes the effect of an innovation ε0 after s periods have

elapsed.

From the VMA representation (equation (9.2)), we have ψs(ε0) = θsε0.

(In fact, the impulse response calculation is often used to obtain the VMA

coefficients.) For some variables (notably price changes), the cumulative

impulse response function may be more useful:

�s(ε0) ≡
s
∑

k=0

ψs(ε0). (9.14)

Whether computing the impulse response function as a descriptive

tool or forecasting the effects of a contemplated action, we need to give

some thought to the specification of ε0. As a realistic example, we might

wish to examine a buy order (qt = +1), either to illustrate how the market

responds to a typical buy order or to forecast what will happen (at least

in the short run) if we actually place such an order.

If we know that the structural model is the particular one described in

section 9.2, we simply set vt so that qt = +1, set ut = 0 and forecast using

equation (9.7). We do not usually know the structural model, however.

Typically we’re working from estimates of a statistical model (a VAR or

VMA). This complicates specification of ε0. From the perspective of the

VAR or VMA model of the trade and price data, the innovation vector and

its variance are:

εt =
[

ε�p,t

εq,t

]

and � =
[

σ2
�p σ�p,q

σ�p,q σ2
q

]

. (9.15)

The innovations in the statistical model are simply associated with

the observed variables, and have no necessary structural interpretation.

We can still set εq,t according to our contemplated trade (εq,t = +1), but

how should we set ε�p,t?
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The answer to this specific problem depends on the immediate (time t)

relation between the trade and price-change innovations. The broader

issue in time-series analysis concerns contemporaneous effects among

the model variables. It turns out that although there is no single reliable

answer, the structure of the covariance matrix � tells us something about

the range of possibilities. The next section shows how to determine this.

9.4 Resolution of Contemporaneous Effects

The uncertainty surrounding contemporaneous effects in VAR/VMA

specifications can be resolved by imposing a causal ordering, essen-

tially a restriction that the innovation in one variable may affect that

of another but not the reverse. Alternative orderings generally lead to

different forecasts and impulse response functions, so consideration of

these alternatives suggests bounds on these functions.

The main tool for imposing a causal ordering is the Cholesky factoriza-

tion (also called the Cholesky decomposition). For a nonsingular covari-

ance matrix (more generally, a symmetric positive definite matrix) �,

the Cholesky factorization is given by � = F ′F where F is an upper

triangular matrix (i.e., has zeros below the main diagonal.)

Suppose that � is the covariance matrix of a vector random variable ε.

We can view ε as being constructed as ε = F ′z where Var(z) = I . Because F

is upper triangular, F ′ is lower triangular:









ε1

ε2

.

.

.

εn









=









f11 0 · · · 0

f21 f22 · · · 0
.
.
.

.

.

.
. . . 0

fn,1 fn,2 · · · fn,n

















z1

z2

.

.

.

zn









. (9.16)

In this representation, it is natural to think of z1 as the ε1 factor. In turn, ε2

is driven by z1 and by a second residual ε2 factor, and so on. Essentially,

we are taking ε1 as the first driver, projecting ε2 on ε1, projecting ε3 on ε1

and ε2, and so on.

The Cholesky factorization of a covariance matrix for two zero-mean

random variables x1 and x2 is given by:

[

σ2
1 σ12

σ12 σ2
2

]

= F ′F

where F ′ =
[

σ1 0

σ12 /σ1

√

σ2
2 − σ2

12

/

σ2
1

]

. (9.17)

The intuition is that x1 can be “generated” as the product of σ1 and z1 (a

random variable with unit variance), and x2 as the product of z1 and a
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projection coefficient (σ12/σ1), plus a multiple of z2 (a second factor that

is uncorrelated with z1). Thus, x1 is placed first in the causal ordering.

The causal ordering imposed by the decomposition is the same order

in which the variables appear in the covariance matrix. Although we often

arrange variables so that the most interesting ones are first or nearly so,

there are no statistical reasons for preferring one ordering over another.

Ordering effects may be illustrated using the sample structural model.

We start from the statistical representation of the model and see how

close we can come to recovering the true structure. Using (9.17) to com-

pute the Cholesky decomposition for the � given in equation (9.9), letting

σ2
1 = σ2

�p = σ2
u + (c + λ)2σ2

v , and so on, do we recover the structure of εt in

(9.9)? We do not. As the model is specified, �pt is the first variable and

qt the last. With this ordering, the Cholesky decomposition will imply a

structure in which the price change drives the contemporaneous trade.

This is the reverse of how the structural model actually works.

To investigate the alternative ordering (“qt first”), we could go back to

the beginning and specify all equations in terms of a reordered variable

set (with yt = [qt �pt]
′), but it is easier to permute Var(εt), compute the

Cholesky factorization, and then reverse the permutation to restore the

original order. The permuted innovation term is:

ε∗
t =

[

εq,t

ε�p,t

]

=
[

vt

ut + (c + λ)vt

]

. (9.18)

The corresponding variance and Cholesky decomposition are:

�∗ =
[

σ2
v (c + λ)σ2

v

(c + λ)σ2
v σ2

u + (c + λ)2σ2
v

]

= F∗′F∗ where F∗ =
[

σv (c + λ)σv

0 σu

]

. (9.19)

Rearranging to restore the starting order, the original Var(εt) can be

expressed as:

� = F ′F where F =
[

σu (c + λ)σv

0 σv

]

. (9.20)

For example, a factor interpretation εt = F ′zt with a “one-unit” shock to

the trade factor then gives:

εt = F ′
[

0

1

]

=
[

(c + λ)σv

σv

]

. (9.21)

This implies that a one-σv shock to qt causes an immediate shock of

(c + λ)σv to �pt . Thus, imposing this ordering in the statistical model

identifies the correct ordering in the structural model.
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9.5 Random-Walk Decompositions
in Multivariate Models

We consider the general case where yt = [�pt x ′
t]

′ possesses a VMA

representation yt = θ(L)εt where Cov(εt) = �. The random-walk decom-

position is still expressed as pt = mt + st , where mt = mt + wt , and st is

a zero-mean covariance stationary process. st may be partially driven by

current and lagged wt , and may also have components uncorrelated with

these disturbances.

9.5.1 The Random-Walk Variance

The variance of the random-walk innovation is

σ2
w = [θ(1)]1�[θ(1)]′1, (9.22)

where [θ(1)]1 denotes the first row of θ(1), that is, the row corresponding

to �pt . If � is diagonal, the right-hand side of equation (9.22) consists of

n distinct terms, each of which represents the corresponding variable’s

contribution to σ2
w .

If � is nondiagonal, these contributions can be described using

Cholesky factorizations. Letting d = [θ(1)]1F ′, where F is the upper tri-

angular Cholesky factor, σ2
w =

∑

d2
i . The vector d can be computed from

the VMA representation of the model, and its squares represent the indi-

vidual variance contributions. The magnitudes of the di are, of course,

dependent on the ordering used to construct the Cholesky factorization.

For the illustration model, the VMA coefficients are given in equation (9.8)

and the Cholesky factorization (permuted, with trades “first”) is given by

equation (9.20). This implies

σ2
w =

[

1 −c
]
[

σu (c + λ)σv

0 σv

][

σu 0

(c + λ)σv σv

][

1

c

]

(9.23)

=
[

σu λσv

]
[

σu

λσv

]

= σ2
u + λ2σ2

v .

This recovers the public information and trade-related (“private informa-

tion”) components.

From the perspective of the sequential and strategic trade models, the

effects of trades on prices arise from asymmetric information. The fore-

going decomposition therefore suggests proxies for the latter. λ2σ2
v is an

absolute measure. If the prices are measured in logs, λσv is approximately

the standard deviation of the trade-drive return component. The quantity
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λ2σ2
v/σ2

w is a relative measure, essentially the coefficient of determination

in a project of price changes on trades.

More generally, decomposition of the random-walk variance provides

a basis for measuring the importance of different sources of market infor-

mation. The xt variable set can potentially include order characteristics,

coarse identification information about order submitters, and (subject

to the qualifications of the following chapter) prices of other securities

(e.g., of a stock index futures contract). The decompositions can often

support refined attributions of where value-relevant information first

arises.

9.5.2 The Pricing Error

If we provisionally assume that ft = mt , then the pricing error is st = pt − ft .

Using the moving average representations for pt and ft , we can show

that equation (8.11) holds in the multivariate setting when each scalar

θi in (8.11) is replaced by [θi]1, the first row of the matrix θi . The pricing

error variance is

σ2
s =

∞
∑

k=0

Ck�C ′
k

where Ck = −
∞
∑

j=k+1

[

θj

]

1
. (9.24)

This expression gives the variance exactly only in the case where ft = mt .

More generally it establishes a lower bound.

In the structural model, st = cqt = c(vt + βvt−1), which implies σ2
s = c2

(1 + β)2σ2
v . Applying equation (9.24), using (9.8) and (9.9),

σ2
s = [θ1 + θ2]1 � [θ1 + θ2]′1 + [θ2]1 � [θ2]′1 (9.25)

= c2
(

1 + β2
)

σ2
v .

Thus, for this particular structural model, the lower bound is exact.

Recall that if β = 0, trades are uncorrelated, and the structural model

is equivalent to the generalized Roll model. For that model, the lower

bound was exact only in the special case where all information was trade

related. The present result is therefore stronger. Including trades in the

model gives us additional explanatory power.

9.6 Informational Attributions

We now turn to the general case of yt = [�pt x ′
t]

′ , where xt is a set of sup-

plementary explanatory variables. The first point is that holding constant
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the time span of the sample, σ2
w is in principle invariant to the choice of

xt . The same value should be obtained if xt is a large and comprehensive

set of market data, or if yt = �pt (a univariate analysis). In finite samples,

of course, the computed values of σ2
w will differ numerically, but these

differences should not generally be attributed to economic features of the

problem. It should not be asserted, for example, that a particular set of

conditioning information implies a more or less volatile efficient price.

This is a consequence of the covariance stationary framework assumed

for the analysis. If Var(�pt) is unconditionally constant over time, then

the long-run price change variance (Var(
∑n

i=1 �pt+i), for large n) will also

be constant (see section 8.3).

In contrast, the filtered price estimate ft does depend on xt . Among

other things, the precision of the filter is likely to be enhanced by richer

conditioning information. As an illustration, consider the bivariate struc-

tural model under the restriction that β = 0 (in which case the structural

model is identical to the generalized Roll model). When yt = [�pt qt],

ft = mt , that is, the projection is exact. When we don’t condition on trades

(yt = �pt), however, ft �= mt generally.

The information attributions implied by decompositions of σ2
w depend

on the choice of xt . A specification of xt that is significantly coarser

than the true public information set may generate misleading impli-

cations. The price changes of individual stocks, for example, exhibit

common factors. This suggests that analysis of �pt for an individual

stock should include in the xt a variable such as the price change in a

stock index. A coarse variable, for example, the return on the cash index

over the previous day, is likely to contribute little in a decomposition

of σ2
w . A more current (yet still widely disseminated) series, for exam-

ple, recent 10-second returns on the corresponding stock index futures

contract, will almost certainly imply (and correctly so) a larger informa-

tional attribution. The estimated total informational contribution of the

remaining variables will drop, but some individual contributions might

in fact rise (depending on their correlations with each other and the futures

returns).

What if xt represents an information set that is in some respects

finer than the true public information collection? Although it would

be unusual to include variables that are known to no market par-

ticipants, analyses sometimes include data available to only a few.

Hasbrouck (1996b) estimates specifications that differentiate New York

Stock Exchange (NYSE) program orders. Program orders involve multi-

ple stocks, and would therefore presumably convey different information

than an order for a single stock. Although the NYSE specialist could

identify program orders, traders off the floor generally could not. Kurov

and Lasser (2004) examine the impact of futures trades classified by

whether or not they involve a futures exchange “local” (floor trader).
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A trader’s identity would be known on the exchange floor, but not

away from it. Sometimes even basic data fall in this category. Some

analyses of foreign exchange dynamics include prices and quantities

of recent trades. Yet there is no general trade reporting in this mar-

ket, and the details of the trade are often known only to the buyer and

seller.

In a decomposition of the random-walk variance, a nonpublic vari-

able may well possess strong explanatory power. This should be kept

in perspective. The variable’s contribution to σ2
w may accurately reflect

the economic value of the information to the few agents in possession.

It almost certainly overstates, however, the contribution that would arise

if the variable were made public. Forcing disclosure of the information

would change the incentives for its production. Futhermore, if the dis-

closure relates to the trading process (e.g., the disclosure of order attributes

or originator identification), then disclosure will probably change trading

behavior.

Private information need not directly relate to security payoffs.

Section 5.6, for example, demonstrates that knowing that previous traders

were uninformed may be valuable. From a random-walk decomposi-

tion perspective, a price change that appears permanent conditional on

the public information set may be transitory when the expectation is

conditioned on private information.

This discussion ends on a note of caution. The techniques described

in this chapter allow us to identify variance components in the effi-

cient price that are attributed to trades. The logic of the sequential

and strategic trade models broadly connect the trade-related variance

components to asymmetric information. The variance measures, and

other microstructure-based information asymmetry proxies, such as price

impact coefficients and spreads, may readily be estimated in many impor-

tant settings. It is then tempting to use relate the cross-sectional and

time-series variation in these proxies to changes or differences in reg-

ulation, reporting, disclosure, or any events that might plausibly be

hypothesized to affect the information environment. Because stakes in

these questions are high, we emphasize that there is little corroborat-

ing evidence that these microstructure based proxies are meaningfully

connected to asymmetric information, at least as it pertains to securities’

cash flows. Neal and Wheatley (1998) examine the spreads of closed-end

mutual funds. The most meaningful valuation number for these securities

is their net asset value. As this is publicly known, information asym-

metries are presumably low. Despite this, they carry substantial spreads.

Saar and Yu (2002) show that price-impact proxies for U.S. firms are not

reliably correlated with other informational variables. The proxies fur-

thermore exhibit time variation around index rebalancing periods, events

which should be unrelated to the firm’s cash flows.
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9.7 Implementation Issues

9.7.1 Timing and Signing

Typically the basic data consist of a time-stamped record of bid and ask

quotes and transactions. If the data originate in a limit order market, the

sequencing of events, in particular the interleaving of quote changes and

trades, is likely to be highly accurate. On the other hand, if the data arise

in a hybrid market, if the data follow different dissemination paths, if the

time stamps are not sufficiently precise, or if there are manual steps to the

process, the sequencing is likely to be suspect.

Relative timing of quotes and trades is important because the prevailing

quote midpoints are generally used to sign the trades (infer the direction

of the order, qt). If all executions occur at posted quotes, we set qt = +1

for a trade priced at the prevailing ask and qt = −1 for trades priced at

the bid. This is generally successful, however, only in limit order markets

(where the book can be accurately reconstructed), and then only when all

executions occur against visible (as opposed to hidden or reserve) limit

orders. More generally we might set qt = Sign(pt − mt), reasoning that a

trade priced above the quote midpoint is more likely to be buyer initiated.

Even this rule, however, leaves unclassified trades occurring exactly at the

midpoint. In some samples, this is a frequent occurrence. When this rule

fails, an alternative is to assign to the trade the sign of the most recent

price change.1

9.7.2 Signed Order Variables

The example structural model uses only one trade variable—the direc-

tion, qt . In most cases, the execution price and quantity of the trade are

known. Because most economic considerations suggest that larger orders

should have a higher information content, it makes sense to include

signed volumes and/or signed monotone transformations of volume.

Letting Vt denote the volume of the trade (in shares or value), the can-

didates would include qtVt , qt
√

Vt , and so on. Hasbrouck (1991a) uses

signed-squared volumes (qtV
2
t ). This transformation, however, is likely to

amplify the effect of extreme dispersion of volumes (Gabaix et al. (2003)),

leading to unstable estimates. In general, convex transformations should

probably be avoided.

A VMA or VAR model applied to transformed data can capture cer-

tain nonlinear features while remaining computationally convenient.

The capabilities and limitations are similar to those associated with

linear regression on nonlinear functions of the explanatory variables.

That is, transformations can locally rescale additive linear effects but

cannot capture nonlinear interactions. For example, a specification like
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yi = (xi,1)a1 (xi,2)a2 + εi can’t be reworked as yi = α1f1(xi,1) + α2f2(xi,2) + ηi

by artful choice of f1 and f2.

As a rough generalization, the estimated relation between order size

and price impact is concave, becoming flat at large sizes (see, for exam-

ple, Kempf and Korn 1999). Although it might seem obvious that signed

order size should be included in the price change specification, it often

contributes little incremental explanatory power above the signed trade

direction variable (Jones, Kaul, and Lipson (1994)). A possible explana-

tion for this draws on time variation in liquidity. If agents trade large

amounts when price impact is low, and small amounts when price impact

is high, the time-averaged price impact will appear relatively unaffected

by order size (Coppejans, Domowitz, and Madhavan (2001) Mendelson

and Tunca (2004). Barclay and Warner (1993) suggest that in U.S. equity

markets most price changes are attributable to medium-size trades.

9.7.3 Event Time or Wall-Clock Time?

In the discussion, the subscript t is assumed to index trades. Thus, t is an

event counter. Other possible event indexes are quote revisions or a mix

of trade and quote revisions (i.e., t is incremented whenever a trade occurs

or a quote is revised). Analyses can also be set in wall-clock time, with t

indexing fixed intervals (e.g., minutes). With wall-clock time index, aggre-

gation or transformation is often necessary to handle (possibly multiple)

events occurring within the interval.

The choice depends on the goals of the analysis. If the analysis involves

a single security and the data are precisely time stamped, an event index

is probably the first choice. The guiding principle here is that the process

is more likely to be covariance stationary in event time than in wall-clock

time.

If the microstructure-based estimates are to be subsequently used in

a cross-sectional analysis, though, comparability across securities may

become the dominant consideration. This may militate in favor of wall-

clock time. For example, volatility per minute is probably more compara-

ble across firms than volatility per trade. Breen, Hodrick, and Korajczyk

(2002) estimate the impact coefficient with a simple linear specification

using daily aggregate data.

9.7.4 Trade Prices or Quote Midpoints?

The specifications discussed to this point have generally assumed that

the pt are actual trade prices. If the analysis is aimed at characterizing

execution-related phenomena, like the pricing error variance or trade exe-

cution costs, this is the usually the correct choice. If the point of the study

is estimation of long-run price impact or the contribution of trades to the

efficient price variance, then the bid-ask midpoint is a sensible alternative
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price variable. Analysis of the present chapter’s structural model would

be more straightforward if it were based on [�mt qt] instead of [�pt qt].

Quotes have certain advantages over trade prices. Although they may

be revised sporadically, they are normally regarded as active between revi-

sions. A bid made at 10:01 A.M., for example, and next revised at 10:05 A.M.

would be considered current at 10:02, 10:03, and 10:04. The price of a trade

executed at 10:01 A.M. might well be stale by 10:02, even if it were still the

most recent transaction. This point is particularly important when a wall-

clock time scale is used. The quote prevailing at the end of an interval can

usually be precisely determined. Quotes can furthermore be revised in the

absence of trades. Because a quote setter’s bid and ask can be picked off in

response to new public information, there is a strong motivation to keep

them up to date. For this reason, they may be presumed to reflect current

public information more reliably that last-sale prices. Finally, trade prices

are subject to bid-ask bounce, a source of transitory volatility. Although

quote midpoints are not immune from transitory components, their short-

run volatility is lower than that of trades. (The long-run volatilities are,

of course, equal.) In this sense, quote midpoints are more precise price

estimates.

9.8 Other Structural Models

The structural model described in section 9.2 was chosen for illustra-

tion and exposition. The literature contains a number of other structural

models. The following are representative.

9.8.1 Glosten and Harris (1988)

Glosten and Harris (1988) (GH) estimate a model in which the efficient

price is driven by the trade size (as well as the direction):

mt = mt−1 + wt

wt = ut + qt(λ0 + λ1Vt) (9.26)

pt = mt + qt(c0 + c1Vt).

where Vt is the (unsigned) volume of the trade. The information content

of the trade is linear in size, as discussed earlier. The cost term is also

linear in size. The exercise that follows is based this representation of the

model.

GH actually estimate a version of this model that is distinctive in two

key respects. First, the model has a methodical treatment of price dis-

creteness. The pt given in equations (9.26) is latent. The observed price

is pt rounded to the nearest tick (in GH’s data, one-eighth of a dollar).

Second, the GH data do not contain bid and ask quotes, so the qt are latent
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variables as well. GH base inference on rounded prices and Vt and estimate

the model using an innovative nonlinear filtering procedure. With so

much of the model’s content unobserved, estimation requires stronger

distributional assumptions. GH treat Vt and qt as exogenous and assume

normality for the public information innovation ut .

Exercise 9.1 (VMA analysis of GH) In the model given by
equations (9.26), assume that the signed volume is Qt ∼ N (0, σ2

Q).

Let qt = sgn(Qt) and Vt = |Qt |. pt and qt are observed (but mt is not).

a. Specify a VMA model yt = θ(L)εt for yt = [�pt qt Qt]
′ and θ(L) =

θ0 + θ1L. If x ∼ N (0, σ2) then E|x| =
√

2σ2/π. Using this result to
compute Cov(qt , Qt ), specify � = Var(εt).

b. Compute σ2
w directly from the expression for wt in equa-

tions (9.26). Verify that equation (9.22) gives the same answer.
c. Using alternative Cholesky decompositions, show that the amount

of σ2
w that is explained by the direction variable qt is (π − 2)λ2

0/π

(when the ordering is Qt , qt , ut ) and (λ0 + λ1σQ
√

2/π)2. (when the
ordering is qt , Qt , ut). Hint: Although the covariance matrix is
3 × 3, the only off-diagonal elements are in the block containing
qt and Qt . Under either permutation this block is 2 × 2, so the
Cholesky decomposition may be computed using equation (9.17).

9.8.2 Madhavan, Richardson, and Roomans

Madhavan, Richardson, and Roomans (1997) (MRR) posit a model similar

to the structural model in section 9.2, except that the signed trades are

generated by an autoregressive process. Specifically, qt = ρqt−1 + vt . This

generates more persistent dependence than the moving average form.

Exercise 9.2 Suppose that the structural model is given by
mt = mt−1 + wt , wt = ut + λvt , qt = ρqt−1 + vt (where|ρ| < 1), and
pt = mt + cqt . Show that the resulting system for yt = [�pt qt] can
be written as a mixed vector autoregressive and moving average
(VARMA) model yt = ϕ1yt−1 + ϕ2yt−2 + θ0εt + θ1εt−1 where

εt = [ut vt]
′ and � =

[

σ2
u 0

0 σ2
v

]

. For a VARMA model of the form

φ(L)yt = θ(L)εt , σ
2
w = A�A′ where A is the first row of [φ(1)]−1θ(1).

Verify that this gives the structurally correct expression for σ2
w .

9.9 Estimating Price Impact from
Returns and Volume

The specifications discussed in this chapter regress returns against order

flow that has been signed as to buyer- or seller-initiated. The sign is usually
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inferred by comparing high-frequency trade and quote prices. Many sam-

ples, particularly long-term historical databases, however, only include

returns and (unsigned) volume aggregated over daily or longer intervals.

These data can also be used to estimate price impact measures, but the

estimates are necessarily best viewed as proxies.

If the true price impact model is �pt = λxt + ut where xt is the series

signed trades, then inference about λ based on |�pt | and |xt | (the trade vol-

ume) is supported under certain distributional assumptions. In particular,

if �pt and xt are bivariate normal, then |�pt | and |xt | are jointly bivariate

half-normal. E[|�pt |||xt |] is nonlinear, but of a known form, and estima-

tion of λ could proceed (see Kotz, Balakrishnan, and Johnson (2000) also

the correction at Mathstatica (2005)). Normality, however, is likely to be

a poor assumption in most samples of returns and volumes. Furthermore,

no simple analogous relation characterizes data that are time-aggregated.

There are a number of approaches to quantifying the contemporaneous

return-volume relationship. The liquidity ratio is the time-series average

L = (|Volt |/|rt |) where t typically indexes days and the average is over all

days in the month or quarter for which the return is nonzero. It is also

sometimes called the Amivest liquidity ratio, after the now-defunct man-

agement firm that developed it. Amihud (2002) suggests the illiquidity

ratio I = (|rt |/|Volt |), where the average is over all days with nonzero vol-

ume. Both estimates are prone to extreme values, although the illiquidity

ratio, due to the presence of volume in the denominator, is somewhat

more stable. Hasbrouck (2005) finds that in the cross section, both mea-

sures are moderately positively correlated with λ coefficients estimated

from high-frequency data, but that the illiquidity measure appears to be

the better proxy. Besides Amihud (2002), illiquidity ratios have been used

in asset pricing specifications by Acharya and Pedersen (2005).
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Multiple Securities and Multiple Prices

Markets for different securities often interact. The standard theory of

portfolio optimization is built on the assumption that securities share

common-factor value determinants. The value of a derivative securities

is generally linked to its underlying asset by arbitrage possibilities.

The trading process may reflect these long-term interactions and may

exhibit other dependencies as well. Trades may be correlated for non-

informational reasons. A trader buying into an index, for example, will

place orders in many or all stocks of the index. A trade in stock A, for

example, that conveys information about a factor that is also a value deter-

minant of stock B may move the price of B. Arbitrage, too, usually requires

trading.

The starting point for this chapter is models formed by simply stack-

ing single-security specifications like those described in earlier chapters.

These are useful, for example, in modeling the joint behavior of two stocks

in the same industry or the joint dynamics of a stock and an index. The

stacking approach fails, though, when we have multiple prices for the

same security (like a bid and an ask, or the bid in two different trading

venues) or when the securities being modeled are linking by arbitrage.

To handle these cases, the chapter describes error correction models and

the role of cointegration. Engle and Granger (1987) provide a formal

analysis of cointegration; Hamilton (1994, Ch. 19) is a textbook presen-

tation; Hasbrouck (1995) discusses microstructure applications.

10.1 Stacked Models of Multiple Prices

Consider a structural model of two stocks with Roll dynamics:

mit = mi,t−1 + uit

pit = mit + cqit for i = 1, 2.
(10.1)

94
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We might allow for dependence between the uit arising from common

value components or between the qit (reflecting commonality in purchases

and sales). The observations are the price changes �pt = [�p1t �p2t]
′.

Suppose that the ui,t values are uncorrelated white-noise processes:

Eu1tu2t = 0 and Eu2
it = σ2

u = 1. The trade directions are correlated, however,

with Eq1tq2t = ρ. The vector autocovariances are then

Ŵ0 ≡ Var(�pt) =
[

2c2 + σ2
u ρc2

ρc2 2c2 + σ2
u

]

;

(10.2)

Ŵ1 ≡ Cov(�pt , �pt−1) =
[

−c2 −ρc2

−ρc2 −c2

]

,

with Ŵk = 0 for |k| > 1. These imply a VMA of the form �pt = θ(L)εt where

θ(L) = I + θ1L.

The VMA parameters may be obtained by equating the autocovariances

implied by the structural and MA representations (following the same

logic as in the univariate case). The expressions for the VMA parameters in

terms of the structural ones are complicated and not particularly intuitive.

So we continue with specific numeric values σ2
u = 1, c = 10, and ρ = 0.9.

With these parameters the VMA parameters are

θ1 =
[

−0.830 −0.100

−0.100 −0.830

]

and

� = Var(εt) =
[

109.0 95.3

95.3 109.0

]

. (10.3)

The variance-covariance matrix of the random-walk components is

θ(1)�θ(1)′. Using (10.3), this is equal to 2 × 2 identity matrix. This is struc-

turally correct: The efficient price innovations (the uit) have unit variance,

and they are uncorrelated.

We next seek to determine security 1’s contribution to the efficient

price variance of security 2. This question requires a bit of explanation.

According to the structural model, this contribution is zero. But in an

empirical situation we would be working from an estimate of the VMA

representation. Because � is not diagonal, the variance decomposition

requires a Cholesky factorization. With the given ordering (security 1 first),

the Cholesky factorization is � = F ′F , where

F ′ =
[

10.44 0

9.13 5.07

]

. (10.4)

The first row of θ(1)F ′ is [θ(1)F ′]1 = [0.862 −0.507]. The random-walk

variance decomposition for the first stock is (0.862)2 + (0.507)2 = 0.743 +
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0.257 = 1, implying that 74.3% of stock 1’s random-walk variance Var(u1t)

is explained by its own innovations, and 25.7% is explained by the

innovations in the other stock (and the reverse holds for stock 2).

These results are surprising. The statistical model seems to imply

(incorrectly) that the efficient price for stock 1 is partially driven by

stock 2. Although this conclusion is misleading, it has a sensible expla-

nation. For stock 1, the filtered state estimate is:

f1t = E∗ [m1t |pt , pt−1, . . .
]

= p1t − cE∗ [q1t |pt , pt−1, . . .
]

.

The history of p2t is useful in predicting m1t because it helps predict

q2t , and by virtue of the correlated trade directions, q2t is useful in

predicting q1t .

Does the model “get it right?” If the two securities are U.S. stocks, it

would be likely that the mit would be closely proxied by the publicly

known quote midpoints. Market participants would see these midpoints

evolving independently. The interdependence captured in the model

does not, therefore, characterize agents’ beliefs. It is an artifact of the

econometrician’s limited information set.

10.2 Cointegrated Prices

The stacked security model has interdependent price dynamics, but as the

dependencies arise from correlated trade directions, they are inherently

transient. The same VMA and VAR models would also be appropriate,

though, if we had allow correlation in the efficient price changes. As long

as |Corr(u1t , u2t)| < 1, each price would evolve, at least in part, indepen-

dently of the other. This means that in the long run, the prices of the two

stocks would diverge, in principle without bound.

There are many situations, though, where the prices are so closely

linked by economic factors that boundless divergence is an unattractive

feature of the model. Bid and ask quotes on the same security, for exam-

ple, reflect a single common value plus trade-related costs that may vary,

but in a stationary fashion. Bids for the same security quoted in different

market venues are like to vary considerably but not diverge relative to

each other. Absence of divergence also characterizes bid, ask, and trade

prices.

Other restrictions on long-run divergence arise from arbitrage.

Forward/spot parity, for example, states that the forward price is equal to

the spot price plus the cost of carry. Violations of this condition present

arbitrage opportunities. If the arbitrage would incur trading costs, we

would not expect the parity relationship to hold exactly and uniformly.
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An increasing divergence between forward and spot prices would, how-

ever, run up against arbitrage. A similar principle applies to the prices of

options and their underlying assets, as long as appropriate correction is

made for nonlinearities in the valuation relationship.

When two or more variables individually follow random walk–like

(formally, “integrated”) processes, but there exists a linear combination

of them that is stationary, the variables are said to be cointegrated. The bid

and ask for a stock, for example, are both dominated by random walks. The

difference between them, the spread, is approximately stationary. Engle

and Granger (1987) provide a formal analysis of cointegration; Hamil-

ton (1994, Ch. 19) is a textbook presentation; Hasbrouck (1995) discusses

microstructure applications.

In the presence of cointegration, the statistical models we’ve used

to this point must be modified. VARs especially exhibit specification

problems. Fortunately, simple modifications usually clear up matters.

10.2.1 The Structural Model

The problems and remedies can be illustrated with a simple structural

model.

mt = mt−1 + ut

p1t = mt + c qt (10.5)

p2t = mt−1.

There is one efficient price mt that is common to both prices. The first

price is generated by the usual Roll mechanism. The second price has no

bid-ask spread, but uses an efficient price that is one period stale. This

model can be motivated as a description of trading in a primary market

and a crossing market (discussed in section 2.6). The second price is the

quote midpoint in the primary market, lagged to reflect transmission and

processing delays.

10.2.2 The VMA Representation

Both prices are integrated (contain random-walk components), but

p1t − p2t = ut + cqt is stationary. Thus, the prices are cointegrated. By

direct inspection, the vector time series �pt has a VMA(1) representation

�pt = θ∗
0ε∗

t + θ∗
1ε∗

t−1, where

θ∗
0 =

[

1 c

0 0

]

, θ∗
1 =

[

0 −c

1 0

]

, and ε∗
t =

[

ut

qt

]

. (10.6)

This form is not very useful, however. It is not invertible, that is, it cannot

be transformed into a VAR. Nor can it be reworked into a standard VMA
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form, such as �pt = εt + θ1εt−1. (The device used in section 9.2 does not

work because θ∗
0 is singular.)

There is an alternative VMA representation. The autocovariances of

�pt are:

Ŵ0 =
[

2c2 + σ2
u 0

0 σ2
u

]

; Ŵ1 =
[

−c2 0

σ2
u 0

]

;

and Ŵk = 0 for
∣
∣k
∣
∣ > 1. (10.7)

The alternative VMA is obtained by equating the autocovariances implied

by the general form �pt = εt + θ1εt−1 and �= Var(εt) to the autocovari-

ances given in (10.7), and solving. We obtain:

θ1 =
(

c2 + σ2
u

)−1

[

−c2 c2

σ2
u −σ2

u

]

� = Var(εt ) =








2c2 + σ2
u − c4

c2 + σ2
u

c2σ2
u

c2 + σ2
u

c2σ2
u

c2 + σ2
u

c2σ2
u

c2 + σ2
u








. (10.8)

As in the noncointegrated models, we consider the forecast:

ft = lim
k→∞

E∗[pt+k |pt , Pt−1, . . . .] = pt + E∗[�pt+1|εt , εt−1, . . . ]

= pt + θ1εt .

The forecast has the usual filtering interpretation ft = E∗[mt |pt , pt−1, . . . ].

The first difference is:

�ft = [I + θ1] εt =
(

c2 + σ2
u

)−1

[

σ2
u c2

σ2
u c2

]

εt . (10.9)

Note that the rows of �ft are identical. This implies that the two projected

efficient prices have identical dynamics, that is, that the same filtered

efficient price underlies both securities. It is true that this is a feature of

the structural model, but the important point is that this commonality is

uncovered on the basis of the VMA representation.

Exercise 10.1 Suppose that σ2
u = 1 and c = 2 Using Cholesky factoriza-

tions with the two possible orderings, show that ε1t (i.e., the innova-
tion from the first price) explains between 20% and 55.9% of σ2

u. (Both
prices are informative about mt . The first price is based on the current
mt but impounds the bid/ask bounce error. The second price has no
bid/ask bounce noise, but is based on mt−1. As c gets large, the infor-
mation share of the first market declines; as c declines, the informa-
tion share of the first market increases.)



MULTIPLE SECURITIES AND MULTIPLE PRICES 99

10.2.3 Autoregressive Representations

For most of the VMA models considered up to this point, the VAR is an

alternative representation that is particularly convenient for estimation.

Here, though, if we attempt to determine the VAR coefficients, ϕ(L) in

ϕ(L)�pt = εt , by the usual method of series expansion of (I + θ1L)−1, we

get an unpleasant surprise. The leading terms of the expansion are:

ϕ(L) = I +
(

c2 + σ2
u

)−1

([

c2 −c2

−σ2
u σ2

u

]

L +
[

c2 −c2

−σ2
u σ2

u

]

L2

+
[

c2 −c2

−σ2
u σ2

u

]

L3 + · · ·
)

.

Apparently, the coefficients of the VAR representation do not converge.

This difficulty is not specific to the present structural model. When vari-

ables are cointegrated, no convergent VAR representation exists for the

first-differences.1

Fortunately, a modified version of the VAR does exist. This is the vector

error correction model (VECM). The “error correction” attribute refers to

a common early use of these specifications, the modeling of dynamic sys-

tems in disequilibrium. To build the VECM, note first that a VAR does in

fact exist for the price levels. Because �pt = (1 − L)pt , the VMA represen-

tation becomes (1 − L)pt = θ(L)εt . A VAR level representation, φ(L)pt = εt ,

would have the property that φ(L) = θ(L)−1(1 − L). Direct computation of

this yields:

φ(L) = I − φ1L where φ1 =
(

c2 + σ2
u

)−1

[

σ2
u c2

σ2
u c2

]

. (10.10)

We may work back to first differences as:

pt = φ1pt−1 + εt

�pt = pt − pt−1 = (φ1 − I )pt−1 + εt

=
(

c2 + σ2
u

)−1

[

−c2 c2

σ2
u −σ2

u

]

pt−1 + εt (10.11)

=
(

c2 + σ2
u

)−1

[

−c2

σ2
u

]

[1 −1] pt−1 + εt .

Finally,

�pt = βzt + εt

where β =
(

c2 + σ2
u

)−1

[

−c2

σ2
u

]

and zt = p1t − p2t . (10.12)

This is a VECM, and βzt is the error correction term. zt is the combination

of two prices that is stationary. It is the error, not in the sense of any
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disequilibrium, but rather in the sense of discrepancy. β is the matrix of

adjustment coefficients. If zt > 0, the error correction term implies that p1t

will drop and p2t will rise.

The present structural model is only illustrative, and as such exhibits

some special features. The right-hand side of a VECM typically contains

terms in lagged first differences (�pt−1, �pt−2, . . .). Given the absence of

these terms, the error is eliminated in one step. The normalization of the

error is natural but arbitrary. By appropriate scaling of β, we could have

defined the error as p2t − p1t or (p2t − p1t)/5.

The relative magnitudes of the adjustment coefficients suggest some-

thing about price discovery and leadership. In a sense, the process is like

a bargaining situation in which the two sides each concede something to

reach agreement. The party that makes the smaller concession (changes

position by the smallest amount) is the stronger. The party that moves the

most is the weaker.

10.3 General VECM Specifications

10.3.1 Multiple Prices

We consider the case where there are n prices for a single security. In

many applications, the prices arise from n different trading venues. The

VECM has the general form

�pt = φ1�pt−1 + φ2�pt−2 + · · · + β(zt−1 − b) + εt , (10.13)

where pt is the n × 1 vector of prices. A convenient expression for the

error is:

zt−1
(n−1)×1

=









p1,t−1 − p2,t−1

p1,t−1 − p3,t−1

.

.

.

p1,t−1 − pn−1,t−1









= A′pt−1

where A′ =









1 −1 0 · · · 0

1 0 −1 · · · 0

. . .

1 0 · · · −1









. (10.14)

Each component of zt−1 is a difference relative to the first price. It

is convenient to order the prices so that the presumptively dominant

one appears first. This facilitates interpretation of the β coefficients as

speed-of-adjustment parameters toward the first price. From a statistical

viewpoint, however, the ordering is arbitrary. The essential properties of
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the model are also unaffected if A is replaced by AP, where P is any non-

singular square matrix of order n − 1. Formally, A is considered a linear

basis for the set of cointegrating vectors.

The b in the error correction term is an (n − 1) column vector of mean

errors. From an economic perspective, the mean error is the target of the

adjustment process. For example, if pt = [askt bidt]
′, we’d expect the

difference zt = askt − bidt to tend toward the long-run average spread.

Equation (10.13) suggests a recursive procedure for forecasting. To

construct impulse response functions, we set lagged price changes and

disturbances to zero and work forward from an initial specified shock

εt . By successively computing the impulse response functions for unit

shocks in each variable, we may obtain the VMA representation for the

price changes �pt = θ(L)εt .

We may posit for the n prices a random-walk decomposition of the form

pt
(n×1)

= mt × ι
(n×1)

+ st
(n×1)

where mt = mt−1 + wt , (10.15)

where ι is a vector of ones. It is important to note that mt is a scalar: The

random-walk (“efficient price”) component is the same for all prices in

the model. The random-walk variance is: σ2
w = [θ(1)]1�[θ(1)]′1, where [ · ]1

denotes the first row of the matrix. One property developed earlier for the

structural model, however, is general: The rows of θ(1) are identical. (In

the computation of σ2
w , the first row is as good as any.)

The random-walk variance decomposition was introduced in section

8.6. Letting d = [θ(1)]1F ′ where F is the Cholesky factor of �(= F ′F ),

σ2
w =

∑

d2
i . In the context of section 8.6, the variance decomposition is

used to make informational attributions about a diverse set of variables

(such as prices and trades). Here, all variables are prices, but the princi-

ples are identical. The absolute contribution of the ith price’s innovations

to the common efficient price is d2
i . We may also compute a relative con-

tribution, d2
i /σ2

w . In the context of a model of multiple prices, the relative

contribution is also known as price i’s information share.

Cholesky factorization was used in section 9.4 to impose a causal order-

ing that was supported by economic logic (trades first). In multiple price

analyses, however, one usually tries to preserve balance in the analysis by

treating all prices symmetrically. In practice, this suggests calculating and

reporting for each information share the minimum and maximum over all

causal permutations.

Random-walk variance decompositions are probably more important

here than in any other microstructure application. VECM models are often

estimated for trade prices or quotes from different, competing trading

venues. The venue with the largest information share is in some ways

the most important. In a statistical sense, it is the price leader. Loosely

speaking, the prices of other markets tend to follow its moves. It is the

venue where most value-relevant information is first revealed. The social
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welfare importance of an informationally efficient price is appreciated by

regulators. The dominant market can assert that it is the largest producer

of an important social good and can make a case for regulatory preference

based on something other than self-interest.

The VECM framework suggests other measures of market importance.

One approach suggests measuring contributions by the elements of β =
θ(1)1/ι′θ(1)1, that is, the long-run VMA coefficients normalized to sum

to unity. This vector has some interesting properties. In the permanent/

transitory decomposition defined by pt = m∗
t ι + s∗

t where m∗
t = β′pt , it may

be shown that s∗
t has no long-run effect on m∗

t . This permanent/transitory

decomposition was originally suggested in a macroeconomic context by

Gonzalo and Granger (1995)(GG). Chu, Hsieh, and Tse (1999) and Harris,

McInish, and Wood (2002b) use the decomposition in microstructure ana-

lyses. The general properties and relative merits of information shares and

GG factor components are discussed in a special issue of the Journal of

Financial Markets containing Baillie et al. (2002), de Jong (2002), Harris,

McInish, and Wood (2002a,b), Hasbrouck (2002), and Lehmann (2002).

10.3.2 Extensions

The basic price VECM easily accommodates several useful generaliza-

tions. We might expand the system to include other variables in addition

to the cointegrated prices. These other variables might include orders asso-

ciated with the cointegrated prices or prices of other securities (as long

as they are not cointegrated with the original set of prices). An extended

VECM of this sort would look like:

yt = φ1yt−1 + φ2yt−2 + · · · + β(b − zt−1)εt

where yt =
[

�pt

xt

]

and xt =
[

qt

�p∗
t

]

. (10.16)

The qt includes one or more order variables, and �p∗
t contains the changes

of the noncointegrated prices.

10.3.3 Testing and Estimating Cointegrating Vectors

The present discussion of cointegration has neglected several aspects of

the topic that are usually accorded great attention in treatments motivated

by macroeconomic applications. In macroeconomic analysis, testing for

cointegration is important because the considerations that might cause

it to arise are often not transparent. In microstructure analysis, however,

cointegration or its absence tends to be an obvious structural feature.
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The discussion has proceeded on the assumption that we know the

cointegrating vectors, such as the price difference in the simple struc-

tural model (section 10.2) or the basis for the cointegrating vectors (A in

equation (10.14)). In practice, this is almost always the case. The bids,

asks, trade prices, and so on, even from multiple trading venues, for a

single security cannot reasonably diverge without bound. In applications

involving index arbitrage, the weights of the component prices are set by

the definition of the index, and are known to practitioner and econome-

trician alike. (Of course, it might be easier, particularly in an exploratory

analysis, to estimate the weights, rather than look them up.)

10.3.4 Pairs Trading

The previous remarks notwithstanding, there is one practical situation,

in which the testing and estimation of cointegration vectors is important.

Pairs trading is the strategy of identifying two securities or commodities

with relative prices that are constant in the long run but exhibit consider-

able variation in the short run. When the relative prices diverge from the

long-run value, one buys the (relatively) undervalued security/commodity

and sells (or sells short) the overvalued (Gatev, Goetzmann and

Rouwenhorst (2006)). The ratio of gold and silver prices, for example,

arises in the analysis of commodities trading strategies.

Lest formal cointegration theory appear to put these strategies on a

sound methodological footing, two potential problems should be noted.

The first concerns data-snooping biases. The nominal size of a cointe-

gration test (probability of incorrectly rejecting the null hypothesis of no

cointegration) is likely to understate the true size if the price pair has been

selected from a large number of candidates due to a history of “interest-

ing” comovement. The second problem is that structural breaks can play

havoc with the forecasts of cointegrated models. This is particularly true

of breaks in the long-run means of the errors. What may look like extreme

misvaluation on the basis of historical estimates may actually represent

convergence to a new equilibrium point (Clements and Hendry (1999)

Doornik and Hendry (1997)).

10.4 Time

The preceding chapter noted that in a single-security analysis, it is often

useful to let t index events (e.g., trades). This is tenable because when

the pace of trading accelerates, all events (trades, quote revisions, etc.)

also occur more frequently. In a two-security model, though, if we let t

index times when trades occur in both securities, we will end up throw-

ing out trades that occur in one security only. If we let t index trades in

either security, trades that occur sequentially in one security may wind up

being separated by many intervals if there were intervening trades in the
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other security. In these models, then, event time is awkward. The common

frame of reference provided by wall-clock time is more attractive.

If the specification is to be estimated in wall-clock time, what interval

should be used? The precision of the time stamps (e.g., one second in

TAQ data) sets a lower limit on the interval length. It is always possible

to aggregate up to longer intervals, however, and analyses of this sort may

use intervals of one minute or longer.

In most situations, aggregation reduces the information in a sample. In

a VECM price discovery model, this loss is reflected in the disturbance

covariance matrix �. Time aggregation may make events that are actually

separated in time to appear contemporaneous. This leads to larger off-

diagonal covariances in �. When � is diagonal, the information shares are

precisely determined. As the off-diagonal elements increase in size, the

information shares become more sensitive to the causal ordering imposed

by the Cholesky factorizations. Over all causal permutations, the upper

and lower bounds for the information shares will become wider. A shorter

time interval is desirable, therefore, because it generally implies tighter

bounds.

However, a short time interval has some apparent inconveniences.

First, it is necessary to propagate prices past the time of their initial post-

ing. For example, suppose that t indexes one-second intervals, a bid of

100 is posted at 10:00:15, and a bid of 101 is posted at 10:01:00. In the

observation matrix, a price of 100 will entered at 10:00:15, 10:00:16, . . .,

10:00:59. For bid and ask quotes, this is a sensible procedure because

quotes in most markets are regarded as active and firm until withdrawn

or revised. Suppose, however, that the prices are trade prices. A trade

occurs at a particular time, and it cannot be suggested that the trade is

repeated each second until a fresh transaction is recorded. Propagation

of the trade price can still be justified, however, by interpreting the filled

price series as a record of “last sales.” The economic relevance of last sale

prices is suggested by the fact that they are widely disseminated in market

data streams and are in fact often displayed with no indication of the trade

time. Last sale prices are also used for purposes of index computation.

Second, a side effect of propagating price levels is that the series of price

changes may contain many zero observations. This should not suggest

model misspecification. The VMA, VAR, and VECM specifications rest on

the Wold theorem and covariance stationarity, neither of which preclude

a data series dominated by zeros (or any other value).

Finally, a VECM specified for short intervals may have an exces-

sively large number of parameters. For example, suppose that we wish

to describe dynamics over one minute for a set of five prices with one-

second resolution. Each coefficient matrix in the VECM will be 5 × 5, and

there will be 60 such matrices, implying that the VECM will have at least

1,500 parameters. The parameter space can be greatly reduced, however,

by the use of polynomial distributed lags.



MULTIPLE SECURITIES AND MULTIPLE PRICES 105

When integrating data from multiple markets, one is often reliant on

the time stamps provided by the markets. The quality of the time stamps

depends on the accuracy of internal systems clocks, latencies in data pro-

cessing and transmission, and the nominal reporting precision. Trading

in some markets occurs are such a rapid pace that often multiple events

are reported in the same second. When this happens, the sequencing of

reporting is suspect.

Beyond a certain point, precise determination of when an event like

a trade actually occurred is often a hopeless endeavor, involving con-

siderations of when Smith transmitted a commitment or Jones received

an acknowledgment. For many purposes, though, it suffices to determine

when knowledge of an event entered the public awareness. This is, after

all, the point when agents’ information sets are updated. For this purpose,

it is appropriate to use the timing and sequencing as reported in the real-

time consolidated data feed. Most microstructure data sets are based on

such sources and preserve the source timing.
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Dealers and Their Inventories

Dealers, briefly discussed in section 2.3, are professional intermediaries.

The descriptions of dealer behavior to this point have focused on their

recovery of noninformational operating costs (via c in the Roll model)

and their pricing under asymmetric information. This chapter examines

other aspects of the dealer’s role and behavior.

The discussion first considers the inventory control models. These

analyses (which generally predate the asymmetric information models)

essentially view the securities dealer as being similar in key respects to a

dealer in any other commodity. Normally a vendor maintains an inven-

tory to accommodate randomly arriving purchasers. A securities dealer,

of course, must also accommodate randomly arriving sellers and in fact

must replenish inventory by buying from these sellers. This complicates

the inventory management problem. Control relies on order arrival rates

that are sensitive to the prices posted by the dealer.

The inventory control models predict that the dealer will have a pre-

ferred inventory level. Such a preference, though, may also arise from

risk aversion. The discussion develops this point, its implications for

dealer quotes, and multisecurity extensions. The discussion then exam-

ines some of the evidence on dealer positions and statistical issues that

arise in analyzing the dynamics of these positions.

In going through these analyses, it should be kept in mind that most

of the analyses that focus on the behavior of dealers were developed in

an era when the institutional distinctions between dealers and customers

were sharper than they are at present. Fortunately, many of the analyses

originally developed as models of dealers (in a narrowly defined sense)

are also relevant for the more numerous agents whom we might describe

as customers acting as dealers.

106
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11.1 Inventory Control

11.1.1 Garman (1976)

Garman (1976) suggests that a dealer is needed because buyers and sell-

ers do not arrive synchronously. In his model, buyers and sellers arrive

randomly in continuous time, as Poisson/exponential arrival processes

(section 6.1), and transact a single quantity. The arrival intensity for buy-

ers is λBuy (p), a function of the price they pay. The arrival intensity for

sellers is λSell(p), a function of the price they receive. These functions are

depicted in figure 11.1. They describe demand and supply, but not in the

usual static sense. Market clearing in this context means that buyers and

sellers arrive at the same average rate, that is, with the same intensity.

If the dealer were to quote the same price to buyers and sellers, market

clearing would occur where the intensity functions cross. This is defined

by λBuy (pEq) = λSell(pEq) = λEq. As long as the intensities are the same, the

dealer is on average buying and selling at the same rate.

If the dealer is buying and selling at the same price, of course, there is

no profit. If the dealer quotes an ask price to the buyers and a bid quote to

the sellers, he will make the spread on every unit turned over (the “turn”).

The dealer’s average profit (trading revenue) per unit time is:

π
(

Bid, Ask
)

=
(

Ask − Bid
)

λBuy
(

Ask
)

=
(

Ask − Bid
)

λSell
(

Bid
)

, (11.1)

where we have maintained the condition that is λBuy (Ask) = λSell(Bid),

that is, supply and demand balance (on average). Setting a wide spread

increases the profit on each trade but depresses the rate of arrivals.

Figure 11.1. Arrival rates of buyers and sellers.
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The profits are defined by the shaded rectangle in figure 11.1. The dealer

sets the bid and ask to maximize this area.

Exercise 11.1 Suppose that the (inverse) intensity functions are
given by p(λBuy ) = 3 − λBuy + 0.2(λBuy )2 and p(λSell) = 2 + 0.2λSell +
0.2(λSell)2, where the units of λBuy and λSell are arrivals per minute.
Determine the equilibrium price and arrival rate. Determine the
dealer’s optimal bid and ask and the average profit per minute.

To accommodate the asynchronous buying and selling, the dealer

needs to maintain buffer stocks of the security and cash. The key con-

straint is that the dealer’s inventories of the security and cash cannot

drop below given levels, taken without loss of generality to be zero. If

λBuy (Ask) = λSell(Bid), holdings of stock follow a zero-drift random walk.

Cash holdings follow a positive-drift random walk (due to the turn).

Garman points out that in this case, the dealer is eventually ruined

with probability one. (A zero-drift random walk will eventually hit any

finite barrier with probability one.) Furthermore, with realistic parameter

values, the expected time to ruin is a matter of days.

The dealer in this variant of the Garman model sets the bid and ask

prices once and for all. As he sees an inventory barrier approaching, he

simply watches and hopes that the barrier isn’t hit. Commenting on the

short expected failure times implied by this strategy under realistic param-

eter values, Garman notes, “The order of magnitude makes it clear that the

specialists [dealers] must pursue a policy of relating their prices to their

inventories in order to avoid failure.” This statement lays out the intuition

behind the inventory control principle. The essential mechanism is that

dealers change their bid and ask quotes to elicit an expected imbalance

of buy and sell orders to push their inventories in the direction of their

preferred long-run position.

Before discussing this mechanism further, we note that ruins do occur

(market makers occasionally fail), but these are infrequent events. They

generally arise because security inventories are levered (partially financed

with debt). A sudden price movement triggers a default in the dealer’s bor-

rowing arrangements. In a sense, ruin is caused not by moving inventory

hitting a fixed barrier but by a moving barrier hitting the existing level of

inventory. The relationship between credit and liquidity is modeled by

Brunnermeier and Pedersen (2005).

11.1.2 Amihud and Mendelson (1980)

The Amihud and Mendelson (1980) model has much in common with

the Garman framework. There is a monopolistic dealer. Buyers and sellers

come to the market asynchronously, as Poisson arrivals where the arrival

intensities depend on the posted quotes. The market maker’s inventory of
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the security is constrained to lie between given upper and lower bounds,

which may be thought of as arising from credit constraints. The market

maker maximizes expected profits per unit time.

The model has a number of important predictions. First, the dealer has

a preferred inventory level lying between the two extremes. This arises

from the opportunity cost of being at an extreme point. As the dealer’s

position nears the upper boundary, for example, he must set the bid quote

to lessen (and at the boundary, force to zero) the expected arrival rate for

customer sell orders. Similar considerations come into play near the lower

boundary. When the arrival rate is low on either side of the market, the

rate at which the dealer earns the bid-ask spread is also low.

Figure 11.2 depicts the relation between the inventory position and

bid/ask prices. It is clear that:

• Bid and ask are monotone decreasing functions of the inventory
level.

• There is a positive spread.
• The spread is increasing in distance from preferred position.
• The quotes are not set symmetrically about the “true” value.

Implicit in the figure is another important prediction. Because bids and

asks are depend only on the inventory level, and the inventory level is

mean reverting toward the preferred position, the price effects of inventory

imbalances are transient.

Price

(Preferred position)

J Inventory

level

Pa

Pb

Pa

Pb

∆

∆













Figure 11.2. The dependence of bid and ask prices on inventory
position.
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11.2 Risk Aversion and Dealer Behavior

In the Amihud and Mendelson model, an extreme inventory position

depresses the expected profits of a risk-neutral dealer. Aversion to extreme

positions may also arise, however, due to simple risk aversion on the part

of the dealer. That is, a dealer can be viewed much as any other risk-averse

expected utility maximizer who forms a portfolio. The distinction is that

in disseminating a bid or offer quote, the dealer is allowing for the possi-

bility of a shock to his portfolio. If the dealer is initially at his portfolio

optimum, he will set the bid and offer prices to impound compensation

for being pulled off his optimum, if the bid or offer is hit. To illustrate, we

consider a version of a model originally due to Stoll (1978).

The framework assumes a risky asset with a normally distributed pay-

off and an agent (the dealer) with an exponential utility function. This

setup is often used in economic modeling, and because exponential util-

ity exhibits constant absolute risk aversion (CARA), it is often called the

“CARA-normal” framework. The agent’s preferences over final wealth W

are given by U (W ) = −e−αW . He chooses a strategy to maximize expected

utility EU (W ). Under normality, that is, if W ∼ N (µW , σ2
W ), then expected

utility simplifies to EU (W ) = −e−αµW + α2σ2
W /2.1 To optimize this, it suffices

to maximize αµW − α2σ2
W /2, or equivalently to maximize the certainty

equivalent CE(µW , σ2
W ) = µW − α σ2

W /2.

Returning to the dealer’s problem, we assume that the security has

random payoff X ∼ N (µX , σ2
X ) and that all borrowing and lending is at

a zero rate of interest. Prior to bidding or offering the dealer holds n

units (shares) of the security (not necessarily an optimum), with n < 0

corresponding to a short position. Now suppose that he posts a bid B

for one share. If the bid is not hit, his terminal wealth is W = nX . If

the bid is hit, he acquires one more share for which he pays B, and

W = (n + 1)X − B. For the dealer to be indifferent to an execution, his

certainty equivalent must be the same whether or not his bid is hit:

CE(nµX , n2σ2
X ) = CE((n + 1)µX − B, (n + 1)2σ2

X ). This equivalence implies

B = µx − (2n + 1)ασ2
x/2. (11.2)

The bid is equal to the expected payoff plus or minus a differential. If the

dealer starts out with n > −1/2 (allowing for fractional holdings) the bid

depends inversely on σ2
X and α. If the initial position is n < −1/2, how-

ever, the dealer bids above the expected payoff, and the excess depends

positively on σ2
X and α.

Setting the bid to maintain the expected utility whether or not the bid

is hit is optimal, however, only if the dealer already holds an optimal

number of shares. Suppose that prior to bidding, the dealer can buy or

sell the security at a notional price P. (Stoll suggests that P be viewed

as the dealer’s subjective valuation.) The dealer’s terminal wealth, then

(assuming zero initial endowments of shares and cash), is W = n(X − P).
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Maximizing the certainty equivalent of this over n gives the optimal

holdings as n∗ = (µX − P)/(ασ2
X ). Substituting this for n in equation (11.2)

gives B = P − ασ2
X /2. This value of B leaves the dealer indifferent between

execution and remaining at his optimum.

An advantage of incorporating risk aversion into the analysis is that

it highlights the role of correlation in market making across multiple

securities. To illustrate this, suppose that there are two risky securities

with payoffs X ∼ N (µ, �), where X and µ are column vectors and � is the

payoff covariance matrix. If the holdings are n = [n1 n2]′, then the ter-

minal wealth is W = n′X , so µW = n′µ and σ2
W = n′�n. The dealer makes

a bid B1 for the first security. If the bid is hit, his terminal wealth is

WHit = [n1 + 1 n2]X − B1. Equating the certainty equivalents of being hit

and not being hit gives:

B1 = µ1 − ασ1

2
[(1 + 2n1) σ1 + 2ρn2σ2] , (11.3)

where ρ = Corr(X1, X2). Thus, the dealer will bid less aggressively if the

securities are positively correlated. This conforms to the usual intuition

that positive correlation aggravates total portfolio risk.

On the other hand, if we assume (as before) that the dealer is starting

at his optimum, then B1 = P1 − ασ2
1/2. Surprisingly, this is the same result

as in the one-security case. In particular, the correlation coefficient drops

out. This is a consequence of offsetting effects. The optimal n1 and n2

in equation (11.3) depends negatively on ρ, leaving the bracketed term

invariant to changes in ρ. (Although this offset is a general feature of the

problem, the complete disappearance of ρ in the final expression for the

bid is a consequence of CARA utility.)

11.3 Empirical Analysis of Dealer Inventories

11.3.1 A First Look at the Data

Changes in the dealer’s position reveal the dealer’s trades, which may

disclose strategy and profitability. Position records for dealers (in fact, for

all traders) are therefore difficult to obtain. There are no public data sets.

Most published research is based on data collected for regulatory purposes

and/or made available to the researcher under the condition of no further

redistribution.

NYSE specialist inventories are analyzed by Madhavan and Smidt

(1991, 1993), Hasbrouck and Sofianos (1993), and Madhavan and

Sofianos (1998). The graphs of typical daily closing positions reported

by Hasbrouck and Sofianos are a good place to start. Figure 11.3 depicts

the positions for stock A. The salient features are:

• Inventory are sometimes negative (short positions).
• There is no obvious drift or divergence.
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Figure 11.3. Inventory for stock A.

• The mean inventory is near zero. Although not obvious from the
figure, overnight positions are small: Dealers tend to “go home
flat.”

This inventory path is consistent with the economic logic presented to

this point. Other specialist inventories, however, are not as well behaved.

The specialist position for Hasbrouck and Sofianos’s stock C depicted in

figure 11.4 also appears to be mean-reverting but has protracted departures

(on the order of several months) from the mean. The variation in holdings

seems to be better characterized by long-term components, operating at

horizons normally associated with investment decisions. The specialist

may in fact be pursing short-term inventory control, but toward preferred

positions that are slowly time-varying. The graph demonstrates that even

traders who are officially designated dealers are not necessarily well char-

acterized by the standard inventory perspective. (The plot for stock B, not

reproduced here, exhibits swings of even longer duration and size.)

The next section discusses statistical issues related to the univari-

ate characterization of inventory series and studies that incorporate

inventories into dynamic price/trade models.

11.3.2 Inventories and Trades:
Levels and Differences

If the dealer is counterparty to all trades and all trades are for one unit,

then the trade direction variable used earlier is qt = −�It , where It is the
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Figure 11.4. Inventory for stock C.

dealer’s inventory. (If we wanted to allow for various quantities, we’d just

use the signed order volume in lieu of qt .) If the qt values are uncorrelated,

as in the basic Roll model, then It will follow a random walk, diverging

over time (as noted by Garman). But suppose we start by assuming that

It is well behaved. In particular, if It is covariance stationary, what does

that imply about qt?

11.3.3 Stationarity

In the first place, how do we decide whether a time series is a random walk

or covariance stationary? The question is actually ill-phrased. In the Roll

model, for example, the price is neither a random walk nor stationary. It’s

a mixture of both sorts of components. A somewhat better question is, how

do we know if a time series contains a random-walk component? From a

statistical viewpoint, however, even this is too vague. For reasons that will

shortly become clear, it’s more precise to ask, “Does the process contain a

unit root?” Formally, the material in this section applies to processes that

might have a unit root and are covariance stationary after first differencing.

Statistical issues related to unit roots are discussed in Hamilton (1994,

pp. 475–543) and Fuller (1996, pp. 546–663).

The term unit root arises in connection with the autoregressive rep-

resentation for a time series. Consider the autoregressive form of a time

series xt in terms of the lag polynomial: φ(L)xt = εt where φ(L) = 1 + φ1L +
φ2L2 + · · · +φK LK . The stationarity of xt depends on the form of φ(L) and

in particular on the solutions to the polynomial equation φ(z) = 0.
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The criterion for stationarity is that all of the solutions to φ(z) = 0 must

lie outside of the unit circle. Consider the simplest case, an autoregression

of order one. If xt = φ1xt−1 + εt , then φ(z) = 1 − φ1z = 0 implies z = φ−1
1 ,

and the requirement that |z| > 1 is equivalent to |φ1| < 1. Alternatively, if

we factor the polynomial as φ(z) = (1 − a1z)(1 − a2z) . . . (1 − aK z), the roots

correspond to the a−1
i . If the ith root is equal to one, then a−1

i = 0, and the

lag polynomial will be of the form φ(L) = (1 − L) . . .. In this case, we say

that “xt has a unit root.” If one root lies on the unit circle and the others

lie outside, then xt is stationary after first differencing.

The Roll model also provides a nice illustration. The structural model

has the MA representation (1 − L)pt = θ(L)εt where θ(L) = 1 + θ1L. The

autoregressive representation for the price level is φ(L)pt = εt where

φ(L) = θ(L)−1(1 − L). We can identify at least one root here, and its value

is unity. This is not surprising because we built a random walk into the

structural model.

If we did not have a structural model, though, we’d have to make an

inference based on a sample of data. There are various statistical unit root

tests available. It is quite possible in microstructure situations, though, to

hypothesize situations in which the tests would be misleading. In the Roll

model, for example, a large trading cost coupled with a small random-walk

volatility can generate a sample in which the dominant feature is bid-ask

bounce and the sample path is apparently stationary.

11.3.4 Invertibility

The economic models unambiguously assert that the inventory series It

is mean-reverting. If it is also covariance stationary, then by the Wold

theorem it possesses a moving average representation: It = θ(L)εt . The

first difference is stationary as well and possesses the MA representation

�It = (1 − L)θ(L)εt .

When we encountered in the analysis of the Roll model a series (like

pt) that was (or contained) a random-walk component, we constructed a

stationary process by differencing. Suppose that we aren’t sure whether It

possesses a unit root or not. To be on the safe side, shouldn’t we take the

first difference anyway? If the series is stationary to begin with, the first

difference is still stationary, so by this criterion there is no harm done.

“Overdifferencing” does create one difficulty, however. It ruins the

recursion that underlies the autoregressive representation for the series.

To see this, consider the simple case where It = εt . The recursion then

becomes �It = εt − εt−1 = εt − (�It−1 + εt−2) = · · · = εt−�It−1−�It−2 − · · · ,

from which it is clear that the coefficients on the lagged �It never

converge. Few statistical software routines will alert the user to nonin-

vertibility. It is always possible to compute least squares estimates for

autoregressive models in finite samples. Often these estimated models
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will appear quite reasonable, with apparently well-behaved residuals,

and respectable goodness-of-fit tests.

Sometimes, in lieu of dealer inventories, the data set identifies dealer

trades: “100 shares purchased from the dealer, 200 shares sold by the

dealer, etc.” The trade series is (minus) the first difference of the inventory

series. So if inventories are stationary, the trade series is noninvertible.

A noninvertible moving average model cannot be estimated by inverting

an estimated VAR. It can, however, be estimated directly by Kalman filter

maximum likelihood methods (Hamilton (1994, p. 387)).

11.4 The Dynamics of Prices, Trades, and
Inventories

It is obvious that dealers (at least those who survive) monitor their inven-

tories and keep them from diverging to arbitrarily large long or short

positions. No such clarity, however, characterizes our view of the control

mechanisms.

The mechanism described in section 11.1 is quote-based. Some early

empirical studies found evidence for this mechanism in that inventory

changes had a negative effect on quote changes. As predicted, when a cus-

tomer purchased from a dealer (depleting her inventory) the dealer bid and

ask would rise, presumably as the dealer sought to encourage an offsetting

sell order and discourage another incoming buy order. The problem is that

the same short-term relation is predicted by the asymmetric information

models. (Is the dealer raising the quotes on account of the possibility that

the purchaser is informed?) To differentiate the two effects empirically,

it is necessary to consider the long-run behavior. Information effects of

trades are permanent, while inventory effects are temporary (Hasbrouck

(1988)). That is, when offsetting trades restore the inventory to the desired

position, the inventory control component of the quotes should vanish.

Madhavan and Smidt (1991) describe a theoretical model of dealer behav-

ior that incorporates both inventory and asymmetric information effects

(also see Madhavan and Smidt (1993)).

For NYSE data, Hasbrouck and Sofianos (1993) estimate VARs that

include price changes, signed orders, and specialist inventory positions.

In a market where all trade is against the dealer, qt = −�It , so an analysis

that includes current and lagged qt and It would suffer from multicol-

linearity (excessive dependence in the explanatory variables). The prob-

lem does not arise in the NYSE data because the specialist does not

participate in all trades. Hasbrouck and Sofianos find that most of the

quote dynamics are attributable to trades, with inventories contributing

little explanatory power. Positions are not apparently managed by adjust-

ment of publicly quoted bids and offers.
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This should not be too surprising. A dealer using public quotes would

be signaling to the world at large his desire to buy or sell, putting him at

a competitive disadvantage. Other liquidity suppliers face a similar sort

of dilemma. A customer bidding with a limit order runs the risk that his

bid will be matched by others in the market (quote matching) and that

his order will be executed after those other bids or (in the worst case) not

at all.

If inventory management is not effected with publicly posted bid and

offer quotes, though, how is it accomplished? There are a number of alter-

native mechanisms. They may be grouped in three categories: selective,

nonpublic quoting; interdealer markets; and market-specific rules that

allow dealers to participate in trades without public quoting.

The first of these mechanisms typically arises from the practice (com-

mon in dealer markets) of making firm bids and offers only in response

to an inquiry by a customer and visible and accessible only by that cus-

tomer. Yao (1997) analyzes the U.S. dollar/Deutschmark deals of a major

foreign exchange dealer, and finds that the terms of trade are partially

determined by the inventory position of the dealer in the direction pre-

dicted by the inventory control hypothesis. The disadvantage of broad

public dissemination is avoided, but the mechanism relies on a sustained

flow of customers. Dealers may also trade directly with each other in an

interdealer market (described in section 2.3.1).

In consideration of their market-making obligations, designated deal-

ers on regulated exchanges often have methods of trading that are not

available (or as readily available) to other participants. These typically

involve discretion concerning participation in a trade. Madhavan and

Sofianos (1998) document that NYSE specialist inventory positions are

partial determinants of specialist participation. For example, a specialist

with a neutral inventory position would be inclined to let an incoming

customer buy order transact against sell orders in the limit order book.

With an undesired long position he might sell to the incoming customer

himself. (To do this, he would have to sell at a price below that of any

public limit sell order.) This last-mover advantage is further explored in

section 13.5.

11.5 Concluding Remarks

Garman’s view of dealers as smoothers of buy/sell order imbalances

continues to be useful. His model focuses on asynchronous arrivals of

individual traders, but the perspective also applies when temporary

order imbalances arise in the aggregate. Dealers are agents who (for a

price) accommodate these imbalances (see Grossman and Miller (1987);

Campbell, Grossman, and Wang (1993); Saar (1998); Llorente et al. (2002).

At the same time, the lines between dealers and customers in many
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markets have blurred. Professional intermediaries are no longer invariably

seen as necessary to any well-functioning market. The effects modeled in

these studies certainly remain pertinent, but the dealers are best consid-

ered as a broad set, not limited to those agents officially designated as

such.

The notion that dealers are characterized by inventory control seems

less relevant in today’s markets. Nor does the logic of achieving inventory

control by positioning of the posted quotes seem as compelling as it once

did. On the other hand, if inventory control is more broadly interpreted as

position management, the issues are as pertinent as ever. The underlying

concerns of risk and credit exposure, formerly viewed as important mostly

(or solely) for dealers, are in fact pertinent for a large number of agents that

may, in the course of their trading decisions, act as liquidity suppliers.

Finally, although trade has become disintermediated in many markets

(such as actively traded equities), dealers remain important in many other

markets (bonds, foreign exchange, swaps, etc.). The role they play and how

they should be regulated are ongoing concerns of practical interest.
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Limit Order Markets

The worldwide proliferation of limit order markets (LOMs) clearly estab-

lishes a need for economic and statistical models of these mechanisms.

This chapter discusses some approaches, but it should be admitted at the

outset that no comprehensive and realistic models (either statistical or

economic) exist.

One might start with the view that a limit order, being a bid or offer,

is simply a dealer quote by another name. The implication is that a limit

order is exposed to asymmetric information risk and also must recover

noninformational costs of trade. This view supports the application of

the economic and statistical models described earlier to LOM, hybrid,

and other nondealer markets.

This perspective features a sharp division between liquidity suppliers

and demanders. This dichotomy is a useful modeling simplification, and

it will be used again in later chapters. The essence of a LOM, however, is

that these roles are blurred. Agents dynamically decide whether to supply

liquidity with limit orders or consume it with market orders. Their deci-

sions may depend quite generally on the state of the market. Liquidity, it

is sometimes said, is supplied by the customers.

Accordingly, this chapter concentrates mostly on models that promi-

nently feature order choice. It is easy to see why this might alter our view of

the quotes. In most of the models considered earlier, dealer optimization

and competition lead to a zero expected profit condition: The dealer can’t,

on average, lose money on trades. To a customer intent on accomplishing

a trade, however, a limit order might simply be an alternative superior to

a market order. The customer’s bid need not satisfy a zero expected profit

condition. It might lose money and still be preferable to a market order.

118
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The first section considers a simple one-period model of order choice.

(A dynamic multiperiod model is described in a later chapter.)

It will become apparent from this analysis that a key determinant

of order choice is the probability that a particular limit order will be

executed. The model initially considered here features an exogenous exe-

cution mechanism: The probability that a limit order is executed depends

on its price and nothing more. This greatly simplifies the individual’s deci-

sion problem. In reality, of course, execution probabilities are determined

by the order choice decisions of other agents. The ask price is some else’s

sell limit order; the latent reservation values may trigger market orders.

There is, therefore, a strong dependence between an agent’s own order

choice problem and the order choices made by others in the past and in

the future. Ideally, the solution to the order choice problem should be

consistent with the assumed price and execution processes. That is, the

latter should arise when a set of other traders follows the strategy given by

the former. This consistency is necessary for the market to be in dynamic

equilibrium.

The close dependence between execution probability and order choice

motivates the value of equilibrium analysis. The chapter considers two

equilibrium models, due to Parlour (1998) and Foucault (1999), and some

of the empirical analyses these models have motivated. The final section

summarizes other models, and current directions.

12.1 The Choice between a Limit and Market Order

Most of our models of dealer quoting are characterized by indifference

to execution. The zero expected profit condition underlying the Roll and

asymmetric information models is conditional on a trade, in which event

the dealer simply recovers his costs. The exceptions are the inventory

control models where the dealer generally prefers to trade in one direction

or the other. In this section we investigate a customer’s order choice when

there is a preference for trade. The conceptual framework is based on

Cohen, Maier, Schwartz, and Whitcomb (1981) (CMSW). Related papers

include Angel (1994) and Harris (1998).

We can set up a simple order choice situation by building on the model

considered in section 11.2. In one version of that model, a dealer already at

his portfolio optimum set his bid to include compensation for being pulled

away from that optimum. The bid is defined by the condition that the

expected utility is the same whether or not a customer actually executes

against the bid. The present model uses the same approach to describe a

customer who enters the market with a portfolio imbalance and can enter

a market order, place a limit order, or do nothing.

The model is set in the CARA-normal framework. As in section 11.2

an agent (the customer) has exponential utility U (W ) = −e−αW. If wealth is
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normally distributed, W ∼ N (µW , σ2
W ), then EU (W ) = −e−αµW + α2σ2

W /2.

There is a single security with payoff X ∼ N (µx , σ2
X ), and borrowing or

lending is at a zero rate of interest. If the customer currently holds n shares,

her expected utility is EUBase ≡ EU (W ) where µW = nµX and σ2
W = n2σ2

X .

If she places a limit order to buy at price L and the limit order is hit (exe-

cuted), then her expected utility is EUHit(L) ≡ EU (W ), computed using

µW = (n + 1)µX − L and σ2
W = (n + 1)2σ2

X . The expected utility of the limit

order strategy is then EULimit(L) = PrHit(L)EUHit(L) + [1 − PrHit(L)]EUBase

where PrHit(L) is the probability of execution.

The limit order’s execution probability is an important and difficult-

to-model aspect of the problem. If the order is displayed (and in a

modern electronic market, it usually will be), it changes the information

and strategic incentives of other market participants. Execution prob-

ability is therefore properly modeled as an equilibrium phenomenon.

Although some equilibrium models will be discussed in subsequent

sections, these analyses are stylized and do not claim to achieve full and

realistic characterizations of execution probabilities.

What are the underlying determinants of execution uncertainty? One

way to look at things is to suppose that potential sellers arrive randomly

over time, for example, as in the Poisson process assumed by Easley et al.

(2002). There is then some chance that in any finite interval, no sellers

will arrive.

Alternatively (or additionally), there may be uncertainty about the

reservation prices of potential sellers. The dynamics of double auction

start-ups often involve a progressive narrowing of the spread as buyers

and sellers compete to outbid and outoffer each other. It is natural to sup-

pose that the agents with the strongest demands for trade take the lead

in this process. Yet one strategy involves letting others narrow the spread

and hitting the bid or offer when this convergence is judged to be substan-

tially complete. A newly arriving agent’s visible limit order may trigger

such an action.1

Suppose that the ith potential seller in the market is characterized by an

unexpressed reservation price denoted ci . The seller monitors the market,

and if she sees a buy limit order priced at ci or higher, she immediately

enters a market order to sell. Let C denote the minimum unexpressed

reservation price across all sellers in the market. A limit buy order priced

at L will execute if C ≤ L. Suppose that C is exponentially distributed with

density f (C) = λ exp[−λ(C − θ)]. In this context the exponential parameter

λ may be interpreted as a measure of seller aggressiveness. The lower

bound of the distribution is θ (no seller reservation prices are below θ). The

execution probability is simply the distribution function corresponding

to this density, PrHit(L) = 1 − exp[−λ(L − θ)] for L ≥ 0.

With the exponential execution probability, the expected utility of

a limit order strategy may be computed. For purposes of illustra-

tion, we’ll assume parameter values α = 1, µX = 1, σ2
X = 1, λ = 1, and θ = 0.
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Figure 12.1. Limit order placement strategies.

Figure 12.1 depicts expected utility as a function of buy limit price for

initial holdings n = 0, −1, and −2. The concavity reflects the trade-off

between paying a low price with an unaggressive limit order that rarely

executes and paying a high price with an aggressive limit that is highly

likely to execute.

A customer who is short one unit (n = −1) can be viewed as an agent

with a hedging demand. With the given numerical parameter values, her

optimal limit order is priced at L = 0.75 (and has a 53% probability of

execution). This is obviously preferable to submitting no order.

Now suppose that the current ask quote in the market is A, repre-

senting a dealer or a limit order seller. With a market buy order, the

customer can purchase with certainty, paying A, and achieving expected

utility EUMarket(A) ≡ EU (W ), computed using µW = (n + 1)µX − A and

σ2
W = (n + 1)2σ2

X . A market order can be preferable to doing noth-

ing. The customer is indifferent between these two strategies when

EUMarket(A) = EUBase. With n = −1 and the other assumed values, A = 1.5.

If A < 1.5, the customer will strictly prefer a market buy order to doing

nothing.

We now turn to a comparison of market and limit order strategies.

A limit order priced at L = 0.75 is obviously preferable to a market order

when A = 1.5, because the expected utility of the latter strategy is identical

to that of doing nothing. Suppose now that A moves downward from 1.5.

At what point will the customer switch from a limit to a market order?

The value of A such that EULimit(L = 0.75) = EUMarket(A) is A = 1.17.

It is noteworthy that the switch point is well above the optimal limit

price. CMSW compare this to gravitational pull. (When the market ask
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price, approaching from above, hits 1.17, the limit order buyer is pulled

to the ask—switches to a market buy order.) CMSW show that the prin-

cipal necessary condition for gravitational pull is that limL → A PrHit(L) is

bounded away from unity, that is, that there is a discontinuity in the exe-

cution probability at the ask price. Even as L approaches A in the limit,

some execution uncertainty remains. They suggest that the gravitational

pull effect can explain the existence of a finite bid ask spread, even when

prices are continuous.

12.2 Equilibrium

The order choice model relies on an exogenous (and ad hoc) execution

mechanism. In reality, execution probabilities are fundamentally endoge-

nous. An agent’s own choice depends on the execution probability, which

in turn depends on her conjectures about the choices faced by other agents

who arrive after her. This linkage will tend to mitigate the direct effect of

a change in the market environment. Something that makes an immediate

market order more expensive (e.g., an access fee) will make a limit order

more attractive. But customers arriving later will also prefer limit orders,

driving down the execution probability, thereby making an immediate

limit order less attractive. The outcome of these opposing forces is best

characterized by an analysis of the equilibrium (as noted, for example, by

CMSW).

Equilibrium analyses of limit order markets have been suggested

by Kumar and Seppi (1994), Chakravarty and Holden (1995), Parlour

(1998), Foucault (1999), Foucault, Kadan, and Kandel (2001), and Goettler,

Parlour, and Rajan (2005). The following sections describe two represen-

tative models.

12.2.1 The Parlour (1998) Equilibrium Model

In the Parlour model, executions arise from market orders submitted by

other traders facing their own order choice problems. The model abstracts

from many familiar features of a security market. There is no uncertainty

about the asset’s cash flows, nor is there price determination (at least in

the usual sense). Despite these limitations, however, it elegantly illustrates

the key equilibrium interaction that connects an agent’s order choice and

her beliefs about similar choices made by others in the future.

There is one security. It is traded in day 1 and pays off a certain

amount V on day 2. On day 1, at each of the times t = 1, . . . , T , a ran-

domly drawn customer (agent t) arrives at the market. Agents are first

characterized as potential buyers or sellers. With probability one-half, the

arriving agent is a potential buyer: She has an endowment of cash that

she can use to purchase one share. Otherwise the agent is a potential



LIMIT ORDER MARKETS 123

seller: She holds one share, which can be sold for cash. Agent t’s prefer-

ences are given by a utility function U (C1, C2) = C1 + βtC2, where βt is a

time preference parameter. Across agents, the βt are randomly distributed

over an interval (β, β̄). The form of the distribution, and in particular the

likelihood of outcomes near the endpoints, will affect agents’ eagerness

to trade. Several alternative distributions will be considered. A potential

seller with a low value of βt will be eager to sell; a potential buyer with a

low βt will be disinclined to purchase. Despite strong preference for cur-

rent consumption, he cannot sell short. Nor can a potential seller with a

high βt buy on margin. An agent, on arriving at the market, may decide to

submit no orders and keep his existing positions.

We now turn to the details of the trading mechanism. The bid and ask

prices B and A are fixed, with B < V < A. The limit order book is described

by the number of shares on the bid and ask sides, nB
t and nA

t , immediately

prior to the arrival of agent t. If agent t enters a limit buy order, then

nB
t + 1 = nB

t + 1 (and similarly for limit sell orders). If nA
t ≥ 1 and agent t

enters a buy market order, then nA
t + 1 = nA

t − 1, that is, the order executes

against the book. Limit orders in the book are executed in first-in, first-

out time priority. If agent t enters a buy market order when the book is

empty, the order will execute (at price A) against a dealer. Dealers stand

ready to buy any amount at B or sell any amount at A. They must yield to

customers, in that any customer limit order must be filled before a dealer

can buy or sell. Dealers do not behave strategically or actively.

Agent’s beliefs and optimal strategies are determined by recursively

working backward from time T. This recursion can be described as fol-

lows. For agent T, a limit order is pointless, because there are no remaining

opportunities for a market order to arrive. If she is a potential seller, she

will compare the utility of doing nothing (βT V ) with the utility of selling

at the bid (B). If βT V < B ⇔ bT < B/V, then she’ll enter a market sell order.

Given a particular distribution for βT , we can compute the probability

that agent T will enter a market sell order. A similar computation gives

the probability of a market buy order.

Now consider agent T − 1. If he’s a buyer and nB
T−1 = 0, he can enter

a buy limit order. This will be executed if agent T enters a market sell

order, the probability of which we just computed. If nB
T−1 ≥ 1, agent

T − 1’s limit buy will not be first in the execution queue, and therefore

cannot be executed in the one remaining period. Given agent T − 1’s direc-

tion (potential buyer or seller), nB
T−1, nA

T−1, and the limit order execution

probabilities, his optimal strategy depends on βT−1. Parlour demonstrates

that there are cutoffs β
Buy
Limit and β

Buy
Limit (functions of time, the state of the

book, and the execution probabilities) such that if βT−1 < β
Buy
Limit , agent

T − 1 does nothing; if β
Buy
Limit < βT−1 < β

Buy
Limit , he enters a limit buy order;

and if β
Buy
Limit < βT−1, a market buy order. Given the distribution of βT−1

we can compute the probabilities of these events. These define the limit
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Figure 12.2. Depth of the book over time.

order execution probabilities for time T − 2 limit orders, which define

agent T − 2’s optimal strategies, and so on.

For many of the models discussed in this book, exposition is simplified

by focusing exclusively on one side of the market (e.g., buy market orders

hitting the ask side of the book). It is noteworthy that we can’t do this for

the Parlour model, for example, by restricting the backward recursions to

computations involving limit sell execution probabilities. The reason is

that a limit sell order can only be executed by market buy orders occurring

in the future. The relative attractiveness of these buy market orders will

depend on the execution probabilities of limit buy orders. Thus, execution

probabilities for buy and sell limit orders are jointly determined over time.

The equilibrium features can be illustrated by numerical example. We

set V = 5.5, B = 5, and A = 6. Initially, we assume that the βt are uniformly

distributed over the interval (0, 2). Figure 12.2 depicts the expected depth

of the limit order book over time for trading days of T = 3, 5, 7, and 9

periods. Starting from an empty book at t = 1, the depth increases as the

book tends to fill. The books fill more rapidly for the markets with larger

Ts: with longer trading days, a limit order is more attractive because there

are more opportunities for it to be executed. Near the end of the trading

day, however, the depth drops.

Next, consider the model with T = 5. Figure 12.3 depicts the proba-

bilities of various events at each trading opportunity. Limit order usage

declines over time, while market order usage increases.

Next we consider alternative hypotheses about the agents’ preferences.

Figure 12.4 depicts three candidate distributions for the βt . Panel A is

the uniform distribution used in the previous examples. The distribu-

tion in panel B is triangular. It is concentrated around unity, and exhibits

a relatively low likelihood of extreme realizations (few eager traders).
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Figure 12.3. Event probabilities.

Panel C depicts an inverted triangular distribution in which the proba-

bilities are elevated at the ends (many eager traders).

Intuition suggests that the expected depths of the book across the dis-

tributions should be inversely related to the likelihood of extreme values.

(More eager traders imply more market orders and fewer limit orders.)

This is indeed the case. For a market with a total of T = 7 trading

Figure 12.4. Distribution of betas.
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periods, expected depth prior to the third arriving agent is E
[

nA
T=3

]

is

0.19 when the βt are inverted triangular, 0.27 for the uniform, and 0.37

for the triangular distributions.

What may initially seem less intuitive is the behavior of the strat-

egy cutoff points. Figure 12.4 also depicts for each distribution the β

regions where a potential seller who arrives at time t = 3 and encounters

an empty book will use a market order, use a limit order, or do nothing. For

the uniform distribution, the cutoff between a market and limit order is

βLimit
Sell

= 0.64. A potential seller with β3 = 0.65 would prefer a limit order.

The corresponding cutoff for the triangular distribution is βLimit
Sell

= 0.70,

implying that a seller with β3 = 0.65 would prefer a market order. That

is, holding β3 fixed, switching from a uniform to triangular distributions

shifts the agent from a limit to a market order. Yet we have argued that the

triangular distribution implies less urgency and therefore fewer market

orders in equilibrium.

The resolution of this apparent inconsistency lies in the fact that agent

3’s decisions are driven by the expected future actions of others. With

the triangular distribution, extreme realizations for β4, β5, β6, and β7 are

less likely. It is less probable that a limit order entered by agent 3 will be

executed, so for this agent a market order becomes more desirable. The

value of equilibrium models lies in their ability to illuminate interactions

of this sort.

The Parlour model has a number of empirical implications for the

dynamics of prices and orders. The predictions most commonly invoked

in empirical modeling, however, concern the relation between limit order

usage and the state of the book. These may be stated as follows:

i. An increase in book depth on the bid side decreases the proba-
bility that a buyer will submit a limit order.

ii. An increase in book depth on the offer side increases the
probability that a buyer will submit a limit order.

Predictions for sell limit orders are symmetric. Prediction (i) is a conse-

quence of limit order queuing: An order added to a book when there is

already large depth has more orders standing in front of it, and a lower

probability of execution. This same logic will be used by future sellers

conditioning on the offer side of the book. High offer-side depth decreases

the attractiveness of limit orders for them, making it more likely that they

will use a market sell order. This gives prediction (ii).

12.2.2 The Foucault (1999) Equilibrium Model

The Foucault model also exhibits a dynamic consistency that links exe-

cution probabilities with order choice. Whereas the implications of the



LIMIT ORDER MARKETS 127

Parlour model primarily involve dynamic order choice, Foucault’s results

are cross-sectional. As in the Parlour model, at each time t = 1, . . . , T an

agent arrives in the market. Here, though, T is a random stopping time:

At each t, the probability that trading will terminate is (1 − ρ). If trading

terminates, the security pays off VT = v0 +
∑T

t=1 εt where the εt are inde-

pendently distributed value innovations, εt = ±σ, with each realization

having a probability of one-half.

At each time t (assuming that the game is not over), a trader arrives. The

trader is characterized by the reservation price, Rt = vt + yt , where yt = ±L,

with each realization having a probability of one-half. Yt is independent

of vt at all leads and lags, and hence is not informative about the value.

Instead, it arises from portfolio or liquidity considerations that are not

explicitly modeled. Yt drives the direction of the agent’s desired trade

(buy or sell).

If a trade is executed at price P, a buyer will have utility U(yt) =
VT + yt − P. A seller will have utility U(yt) = P − (VT + yt). The state of

the book at the arrival of agent t is st = {At , Bt}, the best ask and bid in the

book. If there is nothing on the bid side, Bt = −∞; if there is nothing on

the ask side, At = +∞. Agent t knows st , vt , and yt and can take one of

the following actions. If the book is not empty, he can hit either the bid

or the ask with a market order. Alternatively, he can place both a limit

buy and a limit sell order. If the book is empty, this latter strategy is the

only one available (apart from the suboptimal strategy of doing nothing).

A trader gets one shot at the market. He doesn’t have the opportunity

to return and revise the order. Furthermore, limit orders are valid only for

one period. This implies that the book is either empty or full. The prob-

ability of execution for a limit order depends on the limit price in the

usual way. Here, though, the execution probability is not an ad hoc func-

tional form but instead arises endogenously. Specifically, agent t knows

the distribution of vt+1, and the distribution of the characteristics for the

agent t + 1. This enables him to derive the execution probability for any

given limit price.

Despite the simplicity of the model, the strategic considerations regard-

ing order choice are quite rich. First consider execution risk of a limit

order when there is no possibility of change in the underlying asset value

(σ = 0). Part of the execution risk arises from the random characteristics of

the next trader. If yt = +L (a natural buyer) and yt+1 = +L as well, a trade is

unlikely. So a limit order can fail to execute because the two parties wish

to trade in the same direction. A limit order submitted at time t might also

fail to execute, however, because t + 1 = T, that is, the market closes.

If we now allow for nonzero value innovations (σ > 0), a buy limit order

submitted at time t (for example) also faces the risk that εt+1 = −σ. This

corresponds to the real-world situation of a limit order that can’t be can-

celed promptly in response to a public news announcement. This is a form

of the winner’s curse. It increases the chance that an agent’s limit order
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will execute but decreases the agent’s gain from the trade (and perhaps

drives it negative). The limit order is said to be picked off subsequent to

a public information event.

A move in the other direction (εt+1 = +σ) decreases the chance of exe-

cution (but increases the agent’s gains from an execution). This situation

occurs in actual trading situations when the market “moves away” from

a limit order, often leaving the trader (a) wishing he’d originally used a

market order, and (b) chasing the market with more aggressively priced

limit or market orders. (This strategy is considered in chapter 15 but is

not available to agents in the Foucault model.)

The predictions of the model are sensible. As in the analyses of indi-

vidual order choice, when the opposite side quote is distant, a trader is

more likely to use a limit order. The fundamental risk of a security, σ, is

a key variable. If σ increases (higher fundamental risk) then a given limit

order faces a higher pick-off risk. This causes limit order traders to fade

their prices (make them less aggressive) and the spread widens. Market

orders become more expensive, leading traders to favor limit orders. The

order mix shifts in favor of limit orders, but fewer of them execute. This

is a comparative statics result and thus best viewed as a cross-sectional

prediction (across firms) rather than dynamic one (what happens when

the volatility changes over time).

12.3 Empirical Event Models

Initial studies of limit order markets focused on the Tokyo Stock Exchange

(Lehmann and Modest (1994) and Hamao and Hasbrouck (1995)) and the

Paris Bourse (Biais, Hillion and Spatt (1995)). The latter noted that for

many purposes the evolution of a market can be described by a sequence of

well-defined events. A minimal set of events for a LOM, for example, con-

sists of order submissions (buy or sell, market or limit) and cancellations.

We might refine this classification by treating limit orders at different

prices as different events and similarly for cancellations. The content

of the equilibrium models lies in their predictions about the relative

probabilities of these events.

A natural statistical framework for modeling the event occurrences is

the multinomial logit model. (Greene (2002) provides an excellent discus-

sion.) Let the possible events (outcomes) be indexed by j = 0, . . . N, and let

Yt denote the outcome at time t. Outcome probabilities are then given by

the system of equations:

Pr(Yt = i)

Pr(Yt = 0)
= exp [αi + Ztβi] for i = 1, . . . , N . (12.1)

Zt is a vector of conditioning variables (which must be known prior to

outcome determination). The model parameters are the intercepts αi and
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the coefficients βi . Note that although there are N + 1 outcomes, there

are only N equations. This is a consequence of the requirement that the

probabilities sum to one. Outcome zero is the reference event. The condi-

tioning information Z t will presumably include summary statistics on the

depth in the book, recent volume and volatility, and (in a cross-sectional

application) security-specific information, such as return variance, market

capitalization, and so on. One can push the definition of predetermined

to include order size. Even though this is not public information prior to

the outcome determination, it is presumably known to the agent making

the decision.

In modeling discrete choices, it is sometimes possible to order the

outcomes. For example, observations of daily weather that are coded as

cold, mild, and hot are logically modeled as ordered transformations of

an underlying continuous variable (the temperature) that is unobserved

(at least within the context of the model). If a car buyer’s color preferences

are observed to be red, blue, or green, however, there is no obvious natural

ordering.

Ordered outcomes often result in a more parsimonious model. An

ordered multinomial logit model, for example, has the form:

logit(Pr(Yt ≤ i)) = αi + Ztβ for i = 0, . . . , N , (12.2)

where the logit transformation is logit(x) = x/(1- x). One key difference

between equations (12.1) and (12.2) is that the β coefficients in the ordered

logit model are common to all outcomes. This may simplify estimation,

presentation, and interpretation of the results, particularly if Z t is large.

Does the set of limit order market events have a natural ordering?

Within a single direction (buy or sell), limit orders are clearly ordered

by price. Market orders can be placed on the same ordering by imputing

to them a limit price equal to the bid or offer which they hit. (Many systems

in fact require all orders to be priced.) The Parlour model suggests such

an ordering, with βt as the latent continuous variable. It may also seem

natural to place buys and sells in the same ordering, implicitly viewing

sales as resulting from negative demand. However, this is not generally

compatible with the Parlour model, as the β ranges associated with opti-

mal strategies overlap for buyers and sellers. It is also difficult to place

cancellations on this scale.

Representative analyses using unordered logit specifications include

Smith (2000), Ellul et al. (2002) Hasbrouck and Saar (2003); Griffiths et al.

(2000) and Renaldo (2004) employ ordered specifications. The studies

differ in their particulars and often in their conclusions. In describing

dynamic variation in order choice, the most consistent finding concerns

the bid-ask spread: When the spread is wide, order choice tilts in favor

of a limit order. The Parlour prediction that same-side depth favors a

market order is supported by Renaldo, Ellul et al., and Hasbrouck and Saar.
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Support for the hypothesis that an increase in opposite-side depth favors

limit orders, however, is less clear. The effects of volatility in the cross-

section (across firms) are also mixed (Hasbrouck and Saar (2003), Smith

(2000)).

The sequential event analyses discussed herein are motivated the eco-

nomic analyses considered earlier in the chapter and are best viewed as

attempts to test these analyses and guide their refinement. LOMs are suf-

ficiently complex, however, that a case can be made in some situations

for atheoretic statistical modeling (Farmer, Patelli, and Zovko (2005)).
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Depth

In addition to best bid and offers, most modern financial markets present

their customers with full price/quantity schedules, essentially supply

and demand curves for instantaneous trade. This chapter explores the

determinants of these schedules and what might be learned from their

analysis.

The stylized empirical fact is that the supply and demand schedules

appear to be too steep. As an illustration, recall that in the basic sequen-

tial trade model, the price at which an order is executed is equal to the

expectation of the security value (conditional on the trade). Because trade

prices are equal to expectations, trade price changes mirror the revisions

in expectations. In a sequence of three buy orders, for example, the price

at which the last order is executed is the expected security value con-

ditional on all three orders. Now suppose that in a limit order market,

the purchases are combined into one order for three units. The order exe-

cutes against the ask side of the book, at progressively higher prices as

quantities at lower prices were exhausted. It would seem reasonable to

suppose that the price at which the last part of the order is executed will

be the new expected security value, around which the book would reform

shortly after the trade.

Sandas (2001) examines a sample of OMX data. Figure 13.1 (figure 1

in the original) depicts three summary price schedules for two stocks.

The steepest lines (dashed) in each graph are the mean book price sched-

ules. The quantities on the horizontal axis are signed as the demand of

the incoming market order (a negative demand is a sale that executes

against the bid side of the book). The next steepest lines (dash/dotted)

are the median book price schedules. The differences between mean and

131
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Figure 13.1. Estimated limit order book and price revision
schedules for two representative OMX stocks.

median are suggestive of outliers, times when depth is extraordinarily low.

The shallowest lines (solid with dotted confidence intervals) are the price

revisions estimated from dynamic regression specifications similar to

those discussed in chapter 8.

The differences between the price schedules in the book and the price

revision functions are striking. They suggest that following a large order

(one that walks deeply through the book), depth reappears at prices that

are better than the marginal execution price of the order (sometimes

called backfilling). The finding also suggests that agents with large quan-

tities to buy or sell could trade more cheaply on average by splitting

the orders into smaller quantities and sending them to the market over

time.

This chapter discusses the connections between the price schedules

posted by liquidity suppliers and the information possessed by liquidity

demanders. The foundation of the chapter is a family of models orig-

inally presented by Glosten (1989, 1994). The analysis considers three

canonical types of liquidity suppliers and the market environments: com-

petitive dealer, limit order, and monopolistic dealer markets. We then

turn to the liquidity demanders (customers), modeling their informational

and noninformational motives for trade, and considering equilibrium in
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each of the three market settings. The equilibrium price schedules embody

consistent beliefs and optimizing behavior across liquidity suppliers and

their customers. The chapter then returns to the empirical evidence, and

extensions.

13.1 Market Structures and Liquidity Suppliers

Glosten’s market structures are representative of settings commonly

encountered in securities trading.

13.1.1 The Competitive Dealer Market

The liquidity suppliers in this market are dealers. Each dealer quotes a

price schedule that specifies a unit price for the entire amount the cus-

tomer wishes to trade. A customer discloses the full size of his trade.

This rules out the possibility of order splitting. A customer with 100,000

shares to buy, for example, cannot approach two dealers and buy 50,000

shares from each at the price corresponding to a full order size of

50,000 shares (which is what each dealer sees). The customer can in prin-

ciple buy 50,000 shares with each dealer, as long as each dealer knows

that the full amount is 100,000 shares. The customer gains nothing from

this, however, as each dealer sets the unit price based on the full amount.

In this situation the customer has an obvious incentive to lie. Nor-

mally, he would be tempted to disclose an amount smaller than the true

quantity, although if he wished to momentarily establish a fictive price he

might exaggerate the total quantity. Though there is no foolproof way for

the dealer to detect such cheating, unusual volume or price movements

may be suggestive. Dealers may punish suspected infractions by subse-

quently offering poor terms of trade or completely refusing to deal with

the customer.

The dealer’s pricing criterion is the one familiar from the sequential

and strategic trading models: The price must be equal to the expected

value of the security conditional on the trade. If the price is higher than

this expectation, competitors will find it profitable to offer more aggressive

terms; if the price is lower, the dealer will lose money. Equilibrium is not

inevitable. If the informational advantage of the customers is sufficiently

high, no feasible pricing schedule may exist, and the market fails.

13.1.2 The Limit Order Book

The price schedule in a limit order book is the aggregation of unexecuted

orders, typically small orders submitted by numerous and diverse traders.

For pricing, however, the distinctive feature of the book is that the agent

who places a limit order does not know the total size of the incoming order
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that will cause his own order to execute. Unlike the dealer in the last sec-

tion, the limit order trader does not get the opportunity to set the terms of

order based on knowledge of the total incoming order. A large marketable

order will “walk through the book,” with the first portion executing at the

most favorable price and subsequent portions on less favorable terms. For

this reason, executions against the book are discriminating, in the same

sense that a discriminating monopolist picks customers off the demand

curve based on their willingness to pay.

Discrimination changes the incentives to provide liquidity. To see this,

suppose that the best ask in the market is $20.10, and that the total quantity

offered at this and higher prices is 100,000 shares. A trader is contemplat-

ing a limit sell order for 100 shares at $20. In the standard sequential trade

model, his offer price of $20 would be the expectation of the security value,

conditional on an incoming customer order to purchase 100 shares. But

in the book his order will also be executed (at $20) if the incoming order

is a purchase of 100,100 shares. This larger quantity obviously conveys a

stronger positive signal about the security value. There is ample opportu-

nity for ex post regret, because the trader might sell at $20 while (nearly

simultaneously) sellers deeper in the book are selling at higher prices.

The limit order seller cannot prevent this from happening, but he can set

his price to reflect the possibility. In a discriminating book, therefore, a

limit order is priced at the “tail expectation,” that is, the expected value

of the security conditional on an incoming order of a size just sufficient

to trigger execution or anything larger.

13.1.3 A Monopolistic Dealer

Most security markets are well approximated by the competitive dealer or

limit order paradigms just described. But in a market for a thinly traded

security or one in which there are regulatory or institutional barriers to

entry, a dealer may possess market power. In the third setting we consider

a monopolistic dealer.

One feature of this situation is the standard result. The monopolist

enjoys rents, abnormal profits that are not competed away. A more sur-

prising result is that a monopolistic market may benefit customers (relative

to the competitive dealer market). In a competitive dealer market (or in

the limit order market, for that matter) each point on the price sched-

ule is a competitive equilibrium, in the sense that it is open to entry

by new liquidity suppliers. If one point in the price schedule is prof-

itable, a new entrant can supply liquidity at that point only. This rules

out price schedules dependent on cross-subsidization, for example, with

profits on numerous small trades subsidizing losses on infrequent large

trades. A monopolistic dealer, however, is not so restricted. He seeks

to maximize expected profits over the entire price schedule. Profitable

points on his price schedule are not contested and so may offset losses
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at other points. Cross-subsidization may enable the market to stay open

when a competitive dealer market might fail.

13.2 The Customers

To most effectively compare and contrast the three market regimes, we

will analyze them holding constant the remaining features of the economy.

This characterization is stylized, in keeping with the demands of model

tractability. The notation is similar to Glosten’s.

The model is set in the CARA-normal framework described in section

11.2. There is one risky security with random payoff X ∼ N (µX , σ2
X ). An

incoming customer initially has n units of the security and may purchase

q additional units. The initial endowment may be negative, reflecting a

previously established short position or a hedging demand not explicitly

modeled. Likewise, a negative q corresponds to a sale of the security.

The customer has no initial endowment of cash. To finance purchases,

he may borrow at zero interest. Proceeds of sales are invested at zero

interest.

A purchase of q requires an expenditure of R(q), which is interpreted

as the total revenue received by the liquidity supplier(s). In the dealer

models, the customer trades the entire quantity at a single quoted price,

and R(q) = P(q) × q where P(q) is the dealers’ pricing schedule. In the limit

order market, though, R(q) arises from walking through a continuum of

prices. Subsequent to trading, the risky payoff is known. At this point the

customer’s terminal wealth is W = (n + q)X − R(q). The customer chooses

q to maximize an expected utility function of the form EU (W ) = E[−e−ρW ].

The first-order condition for maximization of the certainty equivalent is

µX − (q + n)ρσ2
X − R′(q) = 0. (13.1)

Prior to trade the customer receives a signal (noisy indication) of

the security value S = X + ε where ε ∼ N (0, σ2
ε ) independent of n. Using

the bivariate normal projection results introduced in section 7.1, condi-

tional on S, X ∼ N (µX |S, σ2
X |S) where µX |S = (σ2

ε µX + σ2
X S)/(σ2

ε + σ2
X ), and

σ2
X |S = σ2

ε σ
2
X /(σ2

ε + σ2
X ).

We now turn our attention to what the liquidity suppliers can infer

given the customer’s trade. If the liquidity suppliers knew n, then given q

(and, of course, their revenue function) they could deduce the customer’s

signal. Both parties would then have the same information, and there

would be no informational motive for trade. A richer and more real-

istic interaction results when the liquidity suppliers do not know the

endowment n. More precisely, we assume that across the population of

potential customers, endowments are normally distrubted, n ∼ N (0, σ2
n),
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independent of X and ε. The customer’s trade now arises, in the liquid-

ity suppliers’ view, from a mix of informational and noninformational

motives.

The customer’s first-order condition plays a crucial role in the liquidity

suppliers’ inference. Noting that ρ > 0, equation 13.1 may be rearranged as

M + qρσ2
X |S = µX |S − ρσ2

X |Sn, (13.2)

where M ≡ R′(q) is the suppliers’ marginal revenue, or equivalently (at the

optimum) the customer’s marginal valuation. Conditional on the trade,

the suppliers know M and q, and therefore the left-hand quantity in equa-

tion (13.2). Knowing the total does not suffice to resolve the two terms on

the right-hand side, the informational (µX |S) and hedging (ρσ2
X |Sn) compo-

nents. It does, nevertheless serve as a useful signal. Denoting this quantity

as ω,

ω = µX |S − ρσ2
X |Sn =

σ2
ε µX + σ2

X

(

X + ε − σ2
ε ρn

)

σ2
ε + σ2

X

. (13.3)

To the liquidity suppliers, therefore, ω is a noisy signal of X. ω and

X are jointly bivariate normal with means µω = µX . Using the normal

projection results, µX |ω ≡ E[X |ω] = µX + (ω − µX )σωX /σ2
ω, where σ2

ω =
σ4

X

(

σ2
X + σ2

ε + ρ2σ2
nσ4

ε

)

/
(

σ2
X + σ2

ε

)2
and σωX = σ4

X /
(

σ2
X + σ2

ε

)

.

13.3 Equilibrium in the Three Regimes

13.3.1 The Competitive Dealer Market

We conjecture a linear price schedule: P(q) = k0 + k1q, where k0 and k1

are yet-to-be-determined constants. Then M = R′(q) = ∂/∂q[q(k0 + k1q)] =
k0 + 2k1q. Thus ω = (k0 + 2k1q) + qρσ2

X |S. The equilibrium condition is

P(q) = µX |ω, which then becomes

k0 + k1q = µX +
[(

(k0 + 2k1q) + qρσ2
X |S

)

− µX

]

σωX /σ2
ω. (13.4)

This must hold for all q, giving:

k0 = µX and k1 =
ρσ2

X σ2
ε

ρ2σ2
nσ4

ε − σ2
X − σ2

ε

. (13.5)

For the price schedule to be upward-sloping (and therefore a valid

equilibrium), it is necessary that σ2
ε

(

ρ2σ2
nσ2

ε − 1
)

− σ2
X > 0. Furthermore,

∂k1

∂σ2
X

> 0,
∂k1

∂σ2
ε

< 0,
∂k1

∂σ2
n

< 0, and
∂k1

∂ρ
< 0.
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The intuition for these results lies in the fact that the essential danger

for the liquidity suppliers is loss associated with buying at P(q) > X or

selling at P(q) < X . Higher σ2
X increases this likelihood. Higher σ2

ε however,

decreases the customer’s certainty in his signal, and so lessens the motive

for informational trade. Higher σ2
n or ρ increases the likelihood that the

customer is trading mostly for liquidity reasons.

It is worth emphasizing that the σ2
ε

(

ρ2σ2
nσ2

ε − 1
)

− σ2
X > 0 condition can

be violated by reasonable parameter values. In these cases, no equilib-

rium price schedule exists, and the market fails. When this happens,

customers forgo the hedging benefits from trading (risk sharing). If they

could credibly disclose their signals, they would willingly do so, forgoing

any informational advantage from their trades but benefiting from better

hedging.

13.3.2 The Limit Order Market

We will consider limit orders on the offer side of the market. A customer

purchase of q shares executes by walking through the book. The price

schedule P(q) gives the price of the last limit order executed.

Let m denote the random marginal valuation of incoming customer,

and let m(q) denote the value of m for which the limit order priced at

P(q) is the last limit order executed. Obviously P(q) ≥ E[X |m = m(q)].

That is, the liquidity supplier won’t regret the trade if his is the last

order executed. His order, however, will also be executed with the arrival

of any larger quantities. Taking into account this possibility, his price

must be at least as large as E[X |m ≥ m(q)]. That is, any customer with

m > m(q) will purchase more than q units. The competitive equilibrium

condition is therefore P(q) = E[X |m ≥ m(q)]. The right-hand-side quan-

tity is sometimes described as the upper-tail (conditional) expectation.

It should be noted that although this condition prevents ex post regret

in expectation across all order sizes, certain trade sizes may still be

unprofitable.

The computation of the upper-tail expectation uses the properties of

truncated normal variables (see Greene (2002)). Truncation refers to the

restriction of a random variable to a region above (or below) a given cutoff

point. If X ∼ N (µ, σ2) then the truncated expectation is

E[X |X ≥ X ] = µ + σ

[

φ

(
X − µ

σ

)/(

1 − �

(
X − µ

σ

))]

, (13.6)

where φ and � are the standard normal density and distribution functions.

Next consider the linear projection when Z and Y are bivariate normal:

X = a0 + a1Z + e. Under bivariate normality Z and e are independent, so

E[X |Z ≥ Z] = a0 + a1E[Z|Z ≥ Z].
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Figure 13.2. Price and expectations revision
schedules in a limit order book.

Although the equilibrium condition differs from that of the competitive

dealer model, the customer’s first-order condition and the joint normality

of ω, X and m. Using (13.2) and (13.3),

E[X |m ≥ m] = µX +
σωX

(

qρσ2
X |S − µX + E[m|m ≥ m]

)

σ2
ω

. (13.7)

At any given quantity q, a customer will trade if his marginal valua-

tion m ≥ P(q). In equilibrium, P(q) = E[X |m ≥ m]. This must be solved

numerically, and doing so for the continuum of quantities yields the price

schedule.

Figure 13.2 depicts P(q) for the indicated parameter values. As noted,

this is the upper-tail expectation. The second line in the figure is the point

expectation given the total size of the order. There are several features of

interest. Both functions are nonlinear (due in part to the nonlinearity of the

upper-tail expectation). Also note that some limit orders will be unprof-

itable ex post. Consider the marginal limit order priced to sell at q = 2. If

the size of the incoming order is in fact q = 2, the limit order is profitable:

P(q = 2) > E[X |q = 2]. The limit order will also execute, however, if q = 8,

in which case P(q = 2) < E[X |q = 8], the limit order incurs a loss. Finally,

limq→0+P(q) > µX = 5, that is, even a infinitesimal purchase will incur a

transaction cost. Another way of putting this is that the bid-ask spread is

positive even for arbitrarily small quantities. (In the competitive dealer

model, in contrast, limq→0+P(q) = limq→0−P(q) = µX .) The pricing sched-

ule is sufficiently discriminatory that a ω considerably greater than µX

is necessary before the customer will consider an even an infinitesimal

purchase.
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The relationship between the supply schedule and expectation revi-

sion functions is broadly similar to the empirical finding depicted in

figure 13.1, with the latter lying below the former. Price discrimination in

the book can therefore potentially account for the empirical evidence. We

will subsequently return to this point.

13.3.3 The Monopolistic Dealer

The monopolistic dealer sets a price schedule to maximize E[P(q) −
E[X |q]], where the outer expectation is over all incoming customers (or

equivalently, quantities). As the customer demands depend on P(q), P(q)

implicitly enters into E[X |q]. We will not present the general solution

here, but will instead discuss the solution associated with the parameter

values used to illustrate the limit order book. Using the same parameter

values as in the previous cases, the monopolistic dealer market has prices

and expectations depicted in figure 13.3.

As in the limit order case, some quantities are unprofitable. The rea-

son for this, however, is quite different here. The dealer knows the full

q (as in the competitive dealer case) and is not exposed to an upper-tail

expectation. Instead, the region of losses is necessary to ensure the separa-

tion that makes trades at smaller quantities profitable. If the dealer would,

for example, refuse to sell at q > 6, customers who sought large amounts

would submit the largest feasible order, pooling at q = 6. This would lead

to losses at q = 6 larger than the figure indicates.

Figure 13.3. Price and expectations revision schedules
for a monopolistic dealer.
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13.4 Additional Empirical Evidence on
Limit Order Book Price Schedules

Sandas (2001) estimates for his OMX data a modified version of the

Glosten model. Sandas’s model is dynamic in the sense of allowing for suc-

cessive order arrivals. It is assumed that the book is in a static equilibrium

prior to each order arrival. The specification also assumes an exogenous

order process. Finally, although the earlier exposition was simplified by

allowing prices to be continuous, Glosten (1994) actually uses discrete

prices. Sandas’s model uses discrete prices as well.

The security value (conditional on public information) is Xt , with

dynamics: Xt = Xt−1 + dt . The increment dt reflects the information con-

tent of orders that have arrived through time t and additional public

nontrade information. As before, we’ll analyze only the sell side of the

book and arriving buy orders. Treatment of the bid side is symmetric. The

ask (sell) side of the book is described by a price vector (p1 p2 . . . pk )

ordered so that p1 is the lowest (most aggressive). The associated vector

of quantities is (Q1 Q2 . . . Qk ).

The incoming order is a purchase of b shares, where the distribu-

tion of b is assumed exponential with parameter λ: f (b) = e−bλ/λ. The

revision in beliefs subsequent to the order is given by: E[Xt+1|Xt , b] =
Xt + αb, where α > 0. The order processing cost is γ. If a limit order priced

at p1 is executed, the profit (per unit traded) is p1 − γ − E[Xt+1|Xt , b] =
p1 − Xt − γ − αb.

Suppose that the sell limit orders at the price p1 are ordered in time

priority, the trader wish to sell an infinitesimal amount at p1, and the

cumulative quantity (her order plus everyone who is ahead of her) is q.

Her order will execute if the incoming quantity is at least as high as q. Her

expected profit conditional on execution is

Eπ1 = E[p1 − Xt − γ − αb|b ≥ q] =
∫ ∞

q
(p1 − Xt − γ − αb)f (b)db

= −e−q/λ(Xt + γ + α(q + λ) − p1).

She will be indifferent to adding her order to the queue at this price when

q = Q1 where Q1 = (−Xt − γ − αλ − p1)/α. This might be negative for Xt

just below p1, in which case Q1 = 0. At p2 the expected profit for executed

orders is:

Eπ2 = E[p2 − Xt − γ − αb|b ≥ Q1 + q] =
∫ ∞

Q1+q
(p1 − Xt − γ − αb)f (b)db

= −e−(q+Q1)/λ(Xt + γ + α(q + λ) − p2 + αQ1).

The point of indifference is given by Q2 = (−Xt − γ − αλ + p2 − αQ1)/α.

Quantities Q3, Q4, . . . are computed in similar fashion. Figure 13.4 depicts
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Figure 13.4. Price and expectations revision schedules in a
limit order book with discrete price levels.

the ask side of the book for parameter values Xt = 0, α = 0.1, γ = 0, and

λ = 5. As in the continuous case, the expectation revision function lies

entirely below the price schedule.

In Sandas’s framework, there are two sorts of conditions that can be

used to estimate the expectation revision coefficient α. One estimate is

based on the subsequent dynamic revision in prices, similar to that dis-

cussed in connection with figure 13.1. The other is based on the break-even

conditions already derived for the quantities on the book. The estimates

differ substantially. The break-even-based schedules are generally closer

to the observed schedules, the dynamic revision-based schedules are still

relatively shallow. Tests for overidentifying restrictions strongly reject

the joint use of break-even and dynamic conditions, however. The price

schedules on the book are still too steep relative to the price revisions.

With a view toward future research directions, Sandas examines a

number of model assumptions that could potentially lead to misspeci-

fication. The results suggest allowing for a more flexible distribution of

incoming order sizes, time variation in parameters, endogenous order

sizes, and effects related to intertrade times.

13.5 Hybrid Markets and Depth Improvement

In the competitive dealer market, dealers can condition on the total size

of the incoming order. Limit order traders do not have this opportunity.

Seppi (1997) models a hybrid market in which a public limit order book is

augmented by a dealer. The dealer must yield to public orders: He cannot
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Figure 13.5. Depth improvement.

sell at a price while public customer offers at that price are left unexecuted.

On the other hand, he can condition on the total order size in deciding

how much to sell.

The situation can be depicted in the context of the Sandas version of the

Glosten model (figure 13.5). An incoming purchase order for eight units

would normally execute by walking through the book, buying five units at

a price of one and three additional units at a price of two. But the revised

expectation conditional on this purchase is only 0.8. The dealer would

like to displace the sellers at P = 2, but cannot, due to public priority.

He can, however, sell three units at P = 1. This is permissible because all

public sellers at that price are satisfied. The dealer’s expected profit from

doing this is the shaded area.

The phenomenon is sometimes called depth improvement (see

Bacidore (2002)). The buyer purchases at a lower average price than the

he would have expected given the state of the book. From his viewpoint,

more was available at P = 1 than the book was showing. The public limit

order traders, on the other hand, are disadvantaged. In equilibrium, they

will be less willing to provide liquidity and will post smaller quantities.

The practice whereby a dealer outbids public interest was widely termed

eighthing (when the tick size in U.S. equity markets was $0.125) and is

sometimes now described as pennying. The depth improvement mech-

anism arises from a last-mover advantage enjoyed by the dealer. Rock

(1990) discusses the general features of this phenomenon. He notes that it

can also lead to “price improvement,” because the dealer may buy or sell

at prices that are better than the best published bid and offer.
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Trading Costs: Retrospective
and Comparative

This chapter and the next address trading costs and their relation to strat-

egy and institutional features. Economic logic suggests a definite ordering

for these topics. Most economic data are the outcomes of strategies that

are, at least from agents’ ex ante perspectives, optimal. Thus arises the

ideal paradigm of first defining agents’ objectives, then enumerating the

feasible strategies, mapping these strategies to costs, determining optimal

(cost minimizing) strategies, and finally performing econometric analy-

sis of observed outcomes taking into account their dependence on all

prior stages of the process. The exposition will follow this sequence but

is heavily shaped by the limitations of the data. The present chapter

describes the microstructure literature that aims primarily at comparisons

of alternative trading venues. The objectives and trading strategies con-

sidered in this context are mostly simple ones. The next chapter describes

more realistic trading problems, but in a framework that is more normative

and less relevant for analysis of actual data samples.

In most of the economic models considered to this point, trading prob-

lems have been posed as investment or portfolio problems, albeit ones

with short horizons. Neither the identification of a trading strategy distinct

from the investment decision nor the imputation of a trading cost as such

has been useful or necessary. In practice, however, although investment

and trading decisions should be made jointly, they are usually analyzed

and implemented separately. This separation is most clearly visible in

managed portfolios, where allocation decisions are made by an investment

manager (stock picker) and the actual buying and selling is conducted

by trading desk. The framing perspectives of the decisions can be char-

acterized plainly as long-term versus short-term, but there are usually

143
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fundamental and far-reaching differences in the skills and information

sets of the two groups.

The portfolio manager’s communication of an order to the trading desk

(“desk release”) is only the first step in a chain of delegation. The desk may

assign the order to be worked by particular broker. The broker will send

the order to a particular trading venue. At each step involving discretion

there is an agency relationship, which must be monitored and managed

according to some observable (and ideally, quantifiable) criterion. The

trading costs considered in this chapter are imputations that serve this

purpose.

14.1 Overview

Some components of trading cost are direct and obvious. In this cate-

gory fall commissions, transfer taxes, order submissions fees, and various

account service fees. These are usually itemized on the customer’s invoice

or account statement, and so are easily identified. I will generally ignore

these costs, noting that in practice they can be added back in at the

final stage. I suppress them not because they are trivial but because their

inclusion clutters the analysis and obfuscates more subtle effects.

Trading involves many indirect costs. The most important (and usu-

ally the most easily identifiable) is the price concession associated with an

execution. This is usually measured by the difference between the actual

transaction price and some benchmark price that represents a “fair” mar-

ket value. There are many possible choices for a benchmark, but the most

common is the quote midpoint prevailing prior to the trade. This is gen-

erally called the effective cost, and corresponds to c in the basic Roll

model.

Finally, because many trading strategies do not culminate in an execu-

tion, we need to impute a cost for failures. This often the most difficult

determination because the consequences of failure must be assessed

relative to some original intention that is rarely fully articulated.

14.2 The Implementation Shortfall

The implementation shortfall, initially suggested by Perold (1988), is a

construct that both provides intuition into the aforementioned effects and

contains as special cases most commonly used measures of trading cost.

It is based on the divergence between actual and idealized investment

cash flows. More precisely, it is the difference between the cash flows for

an actual portfolio and those of a hypothetical paper portfolio for which

purchases and sales occur at benchmark prices.
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The mechanics can be illustrated with a simple two-date model.

Suppose that there are i = 1, . . . , N securities, with the first being cash

(the numeraire). Let n0 be the vector of actual initial portfolio holdings (in

shares, or, for i = 1, dollars), and let π0 denote the vector of initial bench-

mark prices. The paper portfolio is described by a vector of holdings, v .

This is a “desired” portfolio and reflects a hypothetical reallocation by

the portfolio manager assuming that purchases and sales could be accom-

plished at the benchmark prices. Thus, the initial values of the actual

and paper portfolios are equal: n′
0π0 = v ′π0. The reallocation in the actual

portfolio is accomplished by purchases and sales at actual trade prices p,

and the final share holdings in the actual portfolio are n1. The actual and

desired holdings will diverge due to, among other things, failed trading

attempts. Because a cash account is included among the assets, the real-

location is accomplished with no net cashflow in or out of the portfolio:

(n1 − n0)′p = 0.

The implementation shortfall is the difference in terminal values

between the paper and actual portfolios, with both valued at end of period

benchmark prices π1, and may be written as:

Implementation

Shortfall
= (v − n1)′π1

= (n1 − n0)′(p − π0)
︸ ︷︷ ︸

Execution cost

+ (v − n1)′(π1 − π0)
︸ ︷︷ ︸

Opportunity cost

. (14.1)

An element n1,i − n0,i for i > 1 represents the number of shares of secu-

rity i bought (if positive) or sold (if negative); the first element n1,1 − n0,1

is the change in the cash account (noting that π0,1 = π1,1 = p1 = 1). The

first term on the right-hand side of equation (14.1) thus represents the

cost of actual executions accomplished at actual trade prices rather than

benchmark prices. The second term is driven by the divergence between

actual and desired holdings and the change in benchmark prices. The

implementation shortfall thus impounds the cost of establishing a partic-

ular position and the cost of divergence between that position and the one

judged (by some other criteria) to be optimal. In other contexts, the second

(opportunity) cost is known as the tracking error.

When the order is executed at one time but at multiple prices, p is

interpreted as the share-weighted average execution price. This is also

appropriate when the order is executed over time, as long as the agent

being measured (trader, broker, etc.) in fact had discretion over the tim-

ing. In this case, the benchmark π0 should be taken prior to the first

execution.

Ex post either or both components of the realized implementation

shortfall may be negative. An execution cost may be negative, for exam-

ple, if the stock is purchased below the benchmark. An opportunity cost
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may be negative if an intended purchase was not completed for a stock

that subsequently declined in value.

The separation of investment and trading decisions is implicit in

the assumed constancy of the desired portfolio. In practice, a portfolio

manager would certainly take expected trading costs into account when

determining v . It is furthermore likely that v would be revised dynami-

cally, conditional on price movements and the outcomes of previous order

strategies. Thus, (v − n1)(π1 −π0) establishes (approximately) the worst

possible case. Consider a buy order that has failed because the price has

moved out of range, π1 ≫ π0. The opportunity cost term is approximately

the cost of buying the shares at the new, higher price. But at the new price,

quite possibly the portfolio manager might seek fewer shares. This sug-

gests that the real opportunity cost may actually be lower than the formula

suggests.

Subject to this qualification, the distribution of the implementation

shortfall, perhaps as summarized by its mean and variance, is a plausible

basis for evaluating a trading strategy. Bearing this in mind, it is useful to

consider the distributions that common strategies might imply.

First, most strategies will generally face a trade-off between expected

execution and opportunity costs. Suppose we take the quote midpoint as

the benchmark, and we wish to purchase a stock. A market order will

achieve execution with certainty, but at a price generally above the mid-

point. This will give a positive execution cost, but zero opportunity cost.

Alternatively, we might submit a limit order priced below the midpoint.

If the limit order is hit, the execution cost component will be negative. If

the limit order is not hit, however, it is most likely to be that the price has

increased, leading to a positive opportunity cost.

Second, assuming typical price dynamics, execution costs are likely to

have low variance. Most limit orders are submitted near the quote mid-

point. If there is no fill, the execution cost is zero. Otherwise, it is the

distance between the limit price and the quote midpoint. For the unfilled

portion of the order, however, opportunity costs are likely to be highly

volatile, as π1 − π0 is the price change over a possibly long horizon. There

is also likely to be a trade-off between the expectation and volatility of the

trading cost. A market order will usually have high expected trading cost,

but with little variation. (A purchase order, for example, will execute at

or very close to the ask.) A limit order priced far away from the market

will have a low expected shortfall but high volatility. This trade-off drives

some of the more formal trading models considered in the next chapter.

It is also noteworthy that the implementation shortfall is defined at

the level of the portfolio rather than the individual security. The total

volatility will then reflect correlation across securities in the outcomes of

limit order strategies.

Over both sides of the trade, and of course in the aggregate, execution

costs are a zero-sum game as long as everyone uses the same benchmark π0.
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Opportunity costs, on the other hand, are measured relative to desired

positions. There is no mechanism to ensure that unconsummated demand

equals unconsummated supply.

Infeasibility of aggregate desired positions can easily lead to misleading

estimates of aggregate implementation shortfalls. For example, suppose

that a dealer bids $99 for one unit of the security, and offers one unit

at $101, and that the rules of the market require that these quotes be

firm (available for immediate execution). There are 100 traders following

the security. They all receive the same information, a positive signal that

causes the security value to increase to $110. At this point, they all “simul-

taneously” attempt to lift the dealer’s offer by submitting marketable limit

orders for one unit, priced at $101. Subject to the vagaries of transmission

delays, the first buy order to arrive will succeed, at an execution cost of

$1(= $101 − $100, the quote midpoint). At this point, the dealer revises

her quotes to $109 bid, offered at $111 (thus bracketing the new value).

Each of the other 99 customers will perceive an opportunity cost of $10

(=$110 − $100) and may well attribute this to sloth on the part of their bro-

kers or their systems. Thus, the aggregate opportunity cost is $990, for an

aggregate implementation shortfall of $991. It is nonsensical, of course, to

suggest that aggregate welfare could be enhanced by this amount if market

frictions or broker ineptitude were eliminated.

The problem is that the benchmark price of π0 = $100 does not come

close, given the new information, to clearing the market. The profits real-

ized by the lucky first trader are akin to lottery winnings. Individual

traders might attempt to gain advantage by increasing the speed of their

order submission linkages, but because only one trader can arrive first,

the situation is fundamentally a tournament (in the economic sense).

14.2.1 The Implementation Cost for
Liquidity Suppliers

Is implementation cost a useful criterion for liquidity suppliers? The

question is important because although institutional trading desks have

traditionally been liquidity demanders, the modern variant may also seek

profits by opportunistically supplying liquidity. Furthermore, empiri-

cal analysis may require imputation of implementation costs when the

trading motive underlying the order is unknown.

If v = n0, implying that the agent already holds his desired position,

the implementation shortfall reduces to −(n1 − n0)(π1 − p), the minimiza-

tion of which is equivalent to maximization of the ex post profit on shares

bought or sold (assuming that the final position is marked to the final

benchmark price). The implementation shortfall can thus be interpreted

as plausible objective function for a liquidity supplier. The decomposi-

tion into execution and opportunity costs, however, is somewhat strained.

For one thing, given that v = n0, the opportunity cost actually applies to
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filled orders. The risk-neutral liquidity suppliers (such as the dealers in

the sequential trade models or the limit order traders in Glosten 1994)

are indifferent to whether their bids or offers are executed. Conditional

on execution, of course, their orders are priced to satisfy a zero expected

profit condition. But in the absence of execution, they incur no loss.

14.2.2 Benchmark Prices

The execution cost based on the pretrade bid-ask midpoint (BAM) is also

known as the effective cost. Since 2001, the U.S. SEC has required U.S.

equity markets to compute effective costs and make summary statistics

available on the Web (U.S. Securities and Exchange Commission 1996).

The rule (605, formerly numbered 11ac1-5 and commonly referred to as

“dash five”) also requires computation of the realized cost. The realized

cost is the execution cost computed using as a benchmark the BAM pre-

vailing five minutes subsequent to the time the market received the order.

Letting pt denote the trade price and mt the prevailing quote midpoint, the

relationship between the effective and realized costs for a buy order is:

pt − mt
︸ ︷︷ ︸

Effective cost

= pt − mt+5
︸ ︷︷ ︸

Realized Cost

+ mt+5 − mt . (14.2)

The difference between effective and realized costs, mt+5 − mt , is some-

times used as an estimate of the price impact of the trade. The realized

cost can also be interpreted as the revenue of the dealer who sold to the

customer (at pt) and then covered his position at the subsequent BAM.

When a timely BAM is not available, practitioners resort to alterna-

tives. One common benchmark used by institutional fund managers is

the value-weighted average price (VWAP) of all trades over a particular

interval, typically one day. VWAP is easier to compute than the effective

or realized cost because it does not require matching by time. It is in a

sense the answer to the question, “How well did we do relative to the rep-

resentative buyer or seller?” It is commonly used to evaluate brokers. In

this connection, we might raise several objections. The first is that orders

vary in their degree of difficulty. A broker who is sent difficult orders

will fare poorly in a VWAP evaluation. Second, if we account for a large

proportion of a day’s volume, our weighted average execution price will

approximate VWAP (they’re almost the same thing) irrespective of how

the orders were handled. Third, VWAP benchmarks can be gamed (see

Harris (2003)).

Other benchmarks include the previous day’s close or the same day’s

close. Among all benchmark choices, these are likely to lead to the

most variable cost estimates. This is because they will tend to be fur-

ther removed in time from the actual trade and so will impound price

movements over a longer period. The previous day’s close, however, is
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of some special interest as a benchmark price due to the large number of

studies based on daily data that assume feasibility of trade at that price in

formulating trading strategies.

14.3 Applications of the Implementation Shortfall

14.3.1 Institutional-Level Order Data

Within the professional investment community, monitoring trading costs

is regarded as good professional practice (see, for example, CFA Insti-

tute 2002). Subject to qualifications already discussed, a portfolio manager

can measure the cost of the fund’s trades using the implementation short-

fall approach. The measurements are more useful, however, if there is

some basis for comparison. Raw trading data can be reverse-engineered

to construct holdings and discern strategies, so managers will generally

avoid disclosure. Thus, a small industry has arisen to provide anonymity

and expertise. Portfolio managers turn their order data over to a firm,

which then computes trading cost estimates. Finally the firm shares

summary statistics computed across all its clients.

The institutional process starts when the portfolio manager sends an

order to its trading desk (desk release). The order at this stage is a general

indication of quantity, price limits, urgency, and so on. The order (or a

component of it) is then sent to a broker (“broker release”). At this stage,

the instructions are usually more explicit. The broker will then attempt

to execute the order (possibly breaking it into smaller pieces) on one or

more trading venues.

The timing of the benchmark BAM depends on which stages of the

process are being evaluated. If the intent is to measure the cost of the

entire trading process, then the BAM should taken as of the desk release

time. The BAM at the broker release time would be used to evaluate

brokers.

The opportunity cost depends on π1. Assuming that for consistency

with π0 we use the BAM, how far into the future should we go, subsequent

to commencement of the order strategy? In principle, the consequences

of an unfilled order may persist indefinitely. Portfolio managers generally

revise the target portfolio (v ), however, in reaction to large price changes.

This revision effectively terminates the original trading instructions and

so should limit the accumulation of opportunity costs. In practice, how-

ever, this termination is rarely explicitly documented. Opportunity cost

calculations instead often invoke a fixed horizon that is long enough

to encompass most trading strategies but short relative to portfolio

turnover. The Plexus Group, for example, computes the opportunity cost

of unexecuted orders over a 30-day window.
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A number of firms in the trading cost industry have shared order

data with academic researchers (having taken steps to maintain cus-

tomer anonymity). Studies of Plexus data include Keim and Madhavan

(1995, 1996, 1997), Conrad, Johnson, and Wahal (2001, 2002, 2003), and

Irvine, Lipson, and Puckett (2006). Analyses of SEI data include Chan and

Lakonishok (1993, 1995, 1997). The aims of these studies vary. Some seek

to characterize the general features of institutional order strategies and

their determinants. Among these results, it is particularly noteworthy

that the fill (execution) rates on these orders are quite high. Keim and

Madhavan (1995) find average completion rates of about 95%. This is

important because it suggests that opportunity costs for unfilled orders

(which are difficult to measure) are apt to be smaller than execution costs.

14.3.2 Market-Level Order Data

Real-time and historical data on the basic market and limit orders entering

a venue are becoming increasingly available. Relative to the institutional

data considered before, the main limitation of these data is that it is gen-

erally impossible to link sequences of orders to reconstruct full order

strategies. Also in contrast to the institutional-level data, execution rates

are low. This is easily explained by noting that a desk order that even-

tually achieves 99% execution may have been worked using a strategy

where limit orders were used and frequently revised. In the market-level

order data, the revisions will appear as disconnected cancellations and

submissions.

The low completion rate of the individual orders makes the opportu-

nity cost imputation important. Analyzing a sample of NYSE limit orders,

Harris and Hasbrouck (1996) assign a cost for canceled orders by assum-

ing a hypothetical fill at the opposing quote prevailing at the time of

cancellation. Expired orders are treated in a similar fashion.

The execution of retail customer market orders in U.S. equity markets

became an important issue in the early 1990s. Concern initially arose due

to increased fragmentation, internalization, and payment for order flow.

This established the context for numerous studies of comparative execu-

tion costs across venues. The earliest studies analyzed execution costs

inferred from trade and quote data (as described in the next subsection).

A small number of later publications report costs computed from order

data (see Bacidore, Ross, and Sofianos (2003); Werner (2003)). Bessem-

binder, Maxwell, and Venkataraman (2005) analyze effective costs in the

U.S. bond market.

Since 2001, summary statistics on execution costs have been com-

puted and made available by the various market centers (under SEC

rule 605, formerly 11ac1-5). The methodology is not completely straight-

forward, however: The U.S. Securities and Exchange Commission (2001)

describes the various interpretations, qualifications, and exclusions.
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Furthermore, the raw data are generally not available, nor are the summary

statistics independently audited or verified.

14.3.3 Market-Level Trade and Quote Data

In the absence of order data, execution cost imputations are often based

on reported trades and quotes, where it is assumed that an execution price

above the BAM originates from a market buy order, and below, from a sell

order. Mathematically this implies that the execution cost is |p − BAM |.
To distinguish this from a computation based on order data, we will

describe it as trade-based.

Trade-based effective cost estimates have been widely used in stud-

ies of comparative market quality and to assess the effects of industry

practices and regulations. Representative studies include Lee (1993),

Huang (1996), Battalio (1997a, 1997b, 1998, 2003), Bessembinder and

Kaufman (1997), Bessembinder (1999, 2003a), Venkataraman (2001),

Peterson (2003), Bacidore (1997), Degryse (1999), de Jong, Nijman, and

Roell (1995), and Renaldo (2002).

Issues that generally arise in the computation of trade-based effective

cost estimates include the accuracy of the quote and trade time stamps and

the validity of the buy/sell direction inference. Time stamps are of concern

because reporting conventions differ for trades and quotes. Because stale

bids and asks will tend to be hit when it is to the advantage of the incom-

ing order, quotes will usually be updated promptly. Trade reports, on the

other hand, simply make public information known to those involved in

the trade. If trades are reported with a lag, the quote used to compute the

execution cost may actually have been posted subsequent to the trade.

Because the quotes will tend to move in the direction of the trade, a small

delay will tend to reduce the estimated effective cost. A large delay may

lead to error in the buy-sell inference (e.g., if a buyer-initiated transac-

tion report is delayed to a time when the quote midpoint lies above the

reported trade price). The time stamps in automated markets are gener-

ally more accurate. Even here, though, we would do well to remember that

quote and trade streams are often consolidated from several venues. The

delays inherent in consolidation may not be uniform, leading to trades

and quotes that are improperly ordered across venues. The same trade-

quote synchronization problems addressed earlier in connection with the

signing of trades arise here (see chapter 9, note 1).

The trade direction inference is affected by the existence of hidden

orders and other latent liquidity mechanisms. For example, a buy market

order may execute at a price at or below the BAM computed on the basis

of the prevailing visible quote if there is an aggressively priced hidden sell

limit order. This may also occur if a market maker, possibly conditioning

on the size or other attribute of the order, betters the prevailing visible

offer.
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14.3.4 Selection Effects

The obvious way to analyze execution cost estimates is to compute sum-

mary statistics over the full sample and subsamples of interest (e.g., by

trading venue). Additionally, execution costs might be regressed against

characteristics of the stock, market conditions, and/or the order. The

results might then be used to guide customers in directing their orders and

other aspects of trading strategy. One might, for example, use regression

estimates to project the execution cost of a contemplated order strategy.

Although these sorts of analyses are sensible first steps, they are based

on samples that are generated with a selection bias. The source of this

bias lies in the decisions of the traders who submitted the orders. Cor-

rections to deal with this bias have been implemented by Madhavan and

Cheng (1997) and Bessembinder (2004).



1515
Prospective Trading Costs
and Execution Strategies

In this chapter we discuss minimization of expected implementation cost

in two stylized dynamic trading problems. Both analyses are set in discrete

time, and in each instance a trader must achieve a purchase by a dead-

line. The first problem concerns long-term order splitting and timing. A

large quantity is to be purchased over a horizon that spans multiple days.

Strategic choice involves quantities to be sent to the market at each time,

but order choice is not modeled. The second problem involves purchase

of a single unit over a shorter horizon, typically several hours. Strategic

choice involves order type (market or limit), and (if a limit order is chosen)

price.

15.1 Models of Order Splitting (Slicing) and Timing

15.1.1 The Basic Problem

The present analysis follows Bertsimas and Lo (1998), a classic and read-

able treatment of the problem. Related work includes Almgren and Chriss

(2000) and Almgren (2003). Over t = 1, . . . , T periods, we seek to mini-

mize the expected cost of purchasing s̄ units of the security. The timed

purchases are st , t = 1, . . . , T , and completion requires s̄ =
∑

st . At the

beginning of period t, the number of shares remaining in the order is

wt = wt−1 − st−1.

The price dynamics are partially stochastic and partially driven by our

trades. The latter effects certainly include transitory components (such

as noninformational components of the bid-ask spread). It is also com-

mon in strategy analyses to allow trades to have permanent price effects.

153
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To facilitate the reader’s access to this literature, this presentation will

also allow for permanent effects. It should be emphasized, however, that

trading strategies are formulated from the perspective of a particular agent

who is presumed to know both who he is and what he knows. Unless the

buyer expects to alter the real characteristics of the firm, his trades will

have no permanent effect on cash flows or the security market price (see

section 5.6).1

Nevertheless allowing for a permanent impact, the quote midpoint at

the end of period t is mt :

mt = mt−1 + µ + λst + εt , (15.1)

where µ is the drift, λst term is the permanent price impact, and εt is a ran-

dom innovation uncorrelated with our trades. The interpretation of drift in

this situation is unusual. Generally in microstructure models, drift is asso-

ciated with an unconditional expected return and is likely to be negligible

in comparison with other terms (section 3.3.1). In this context, however,

drift reflects the buyer’s beliefs about short-term dynamics that may be

large. For example, if the buyer believes that awareness of a recent news

announcement is likely to diffuse over the next hour, she may believe that

there will be a large price adjustment over the hour, that is, a drift over

the trading horizon that is far from zero (and also unrelated to her trades).

Temporary impact is modeled as a discrepancy between the quote

midpoint and the trade price, pt :

pt = mt + γst . (15.2)

γst is a transient impact because it does not persist over time or cumulate

over multiple trades.

The general approach to solving this kind of problem is dynamic pro-

gramming via backward optimization. This will be used in subsequent

analyses, but it is not actually necessary here. The reason is that no new

information develops over time that might cause us to modify our initial

plans. If the security price goes up unexpectedly (a large positive εt), for

example, we will regret not having purchased more stock earlier. We have

learned nothing new, however, that will help us predict the future price

change. We can therefore set up the problem as a static optimization. From

this perspective, subject to the constraint s̄ =
∑

st , the problem is:

min
s1, ..., sT

Et

[
T
∑

t=1

ptst

]

= min
s1, ..., sT

T
∑

t=1

st



tµ + λ

t
∑

j=1

sj + γst



 . (15.3)

With T = 3, for example, the objective function is:

µ(s1 + 2s2 + 3s3) + γ
(

s2
1 + s2

2 + s2
3

)

+ λ
(

s2
1 + s2

2 + s2
3 + s1s2 + s1s3 + s2s3

)

.
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If µ = 0, the objective function is symmetric in its arguments, and the

optimal trading strategy is level: s∗
t = s̄/T . With µ �= 0,

s∗
t = s̄

(
1

T
+ (T + 1) − 2t

2(2γ + λ)
µ

)

. (15.4)

The order size changes linearly over time. With positive drift, we will

accelerate a buy order. The amount of the acceleration depends positively

on µ, of course, but it also depends inversely on γ and λ. As these increase,

departures from the level strategy become more expensive.

In some respects the order slicing strategy resembles that of the

informed trader in the Kyle model (section 7.2). Although in both cases

trading is distributed over time, there are some important differences.

Kyle’s informed trader conditions on price and trades so as to leave

no traces in the form of autocorrelations that might signal his infor-

mation. The trading strategy here, however, is consistent with positive

autocorrelation in the order flow.

15.1.2 Slowly Decaying Nonstochastic
Temporary Effects

The temporary effects of our trades in this specification affect only the

current trade price. This might be a tenable approximation if our trades

account for only a small portion of overall activity. As the relative scale

of the purchase increases, however, it is more likely that transient effects

will spill over into subsequent periods. As a first approximation, it is

reasonable to allow the initial impact to decay gradually over time. This

can be incorporated into the analysis by the addition of a second state

variable,

At =
t−1
∑

i=0

θist−i + θtA0, (15.5)

where θ is the geometric weight (0 ≤ θ < 1). The first term reflects our

trades. The second term can be viewed as summarizing the delayed effect

of others’ trades prior to the start of our own. For t > 1, At = st + θAt−1.

The trade price is:

pt = mt + γAt + εt . (15.6)

To isolate the effect of our own trades, assume for the moment that other

trading was sufficiently distant in the past that A0 ≈ 0. In this case, the first

of our trades will be cheaper than later trades because it will not incur any

persistent cost components of any earlier trades. On the other hand, the

first trade will raise the costs for all later trades.

Balancing these two effects leads to U-shaped trading strategies.

Figure 15.1(A) depicts the execution strategies for various horizons.

Panel B graphs the initial execution on the first trade for a three-period
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Figure 15.1. Characteristics of long-term trading strategies.

horizon, as a function of θ. With θ = 0, the first trade share is 1/3 (as there is

no persistence). This is also true, however, when θ = 1: When persistence

of the temporary impact is complete, the temporary impact is indistin-

guishable from the permanent impact.

We now indicate the effect of nonzero starting values A0. It turns out

that the first trade share is linearly declining in A0. Thus, if previous trades

have pushed up the temporary price component, we will tend to delay our

own purchases, waiting until the initial cost component has decayed. If

A0 is sufficiently large, however, we will actually sell. In this case, the

opportunity to take advantage of a temporarily inflated price by selling

initially outweighs the gains from pursuing our overall purchase plan.

Similarly, if A0 is sufficiently low, it is optimal to buy shares in excess of

s̄, selling them at a profit when the price has risen.

15.1.3 Slowly Decaying Stochastic
Temporary Effects

It might be expected that the orders of others over our trading hori-

zon would induce random variation in the evolution of At . This can be

modeled by adding a disturbance:

At = st + θAt−1 + ut . (15.7)

Of course, if others’ trades are correlated (as ours are), it might be desir-

able to allow for serial correlation in the ut . Stochastic components to At

complicate the solution process. Subsequent to time zero, we might seek

to modify our trading plans in response to random changes in At . Static

optimization is no longer appropriate, and the solution requires dynamic

programming.

To implement this, we first define a value function, Vt , defined as the

total expected expenditure on all purchases from time t onward, assum-

ing that we make the best possible decisions at time t and subsequently.

Because the program must be completed by time T , VT+1 = 0. At any time
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t ≤ T , Vt will depend on the most recently observed quote midpoint mt−1,

the number of units left to be purchased wt , and the past-trade statistic

At−1: Vt = Vt(mt−1, wt , At−1). At time T, the entire remainder must be

purchased, so sT = wT . The expected cost is:

VT (mT−1, wT , AT−1) = ET pT sT = ET (mT−1 + λwT + γAT + εT )wT

= (mT−1 + θ γAT−1 + (λ + γ)wT )wT . (15.8)

Looking ahead at time T − 1, we expect our remaining expenditures to be:

VT−1(mT−2, wT−1, AT−2)

= max
sT−1

ET−1

[

VT (mT−1, wT , AT−1) + pT−1sT−1

]

. (15.9)

To find the optimal sT−1, we substitute into the right-hand side using

(15.8) and the dynamics for the state variables and maximize using

differentiation. VT−2, . . . , V1 are determined in a similar fashion.

The essential features of the solution, though, appear in

s∗
T−1 = wT−1

2
− γ(1 − θ)θ

2[γ(2 − θ) + λ]
AT−2. (15.10)

This is, in fact, identical to the solution one obtains for the deterministic

At . In the deterministic case, though, we can compute AT−2 given what

is known as of t = 1. In the stochastic case, we must wait until AT−2 is

realized before making the trading decision. In both cases, however, the

base solution (trading half the remaining amount) is augmented with a

term that declines in AT−2.

Exercise 15.1 (Predictable variation in the permanent impact
parameter) Suppose that quote midpoint dynamics are given by
mt = mt−1 + λtst + εt , where the λt for t = 1, 2, 3 are known positive
parameters. The trade price is simply pt = mt (there is no transient
price impact). Show that for T = 3 with s1 + s2 + s3 = 1 the optimal
order sizes are

s1 = 1 + 2λ1λ3

λ2
2 − 4λ2λ3

; s2 = λ1(λ2 − 2λ3)

λ2(λ2 − 4λ3)
; s3 = − λ1

λ2 − 4λ3
.

Note that depending on how λt evolves, the optimal purchase may
involve an initial sale (!). For example, when {λ1 = 2, λ2 = 1, λ3 = 1/2},
{s1 = −1, s2 = 0, s3 = 2}. The buyer is initially short selling (to drive
the price down) and then purchasing to cover the short and establish
the required position when price impact is low. Caution is warranted,
however, because counterparties (and regulatory authorities) may
view the intent of the initial sale as establishment of an “artificial”
(i.e., “manipulative”) price.
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15.2 Models of Order Placement

The next analysis also deals with a purchase under a time constraint but

with different emphasis. In the models of the previous section, trading

costs are approximations that abstract from the details of order submis-

sion, and planned orders execute with certainty. This section considers

dynamic order strategy. The strategic variable is order choice (limit or

market, i.e., “make or take”), and execution is uncertain.

Though the present model examines the details of order submission,

quantity is regarded as fixed (or determined in some prior optimization).

The classic strategy for achieving execution involves initially placing a

limit order, repricing it more aggressively over time, and ultimately (if

necessary) using a market order. Angel (1994) and Harris (1998) analyze

order choice strategies for various trading problems. The model discussed

here is adapted from Harris.

15.2.1 The Basic Barrier Diffusion Model

The objective is to minimize the expected purchase price for a single unit

of the security. The price follows a continuous time diffusion, but order

decisions are only made at the discrete times t = 1, . . . , T . The security

must be purchased by the close of period T. At the beginning of each

period, if the security has not yet been purchased, the agent may either

submit a market order or a limit order. If the agent submits a limit order,

he must decide on the limit price Lt (a continuous variable).

On the face of things, this problem seems very similar to the one-period

order choice decisions considered in the single-agent and Parlour models

discussed in chapter 12. In those settings, though, it is only necessary

to model the execution mechanism. Price dynamics do not enter in any

essential way. Multiperiod decisions are fundamentally different because

when a limit order fails to execute, it is generally because the market

price has moved away from the limit order. The trader is forced to chase

the market, eventually achieving execution at an unfavorable price. This

cost and its effect on strategy depend on the trader’s beliefs about price

movements.

The starting point is a simple model of price dynamics and limit order

execution termed here the diffusion-barrier model. Various aspects of this

approach are used in Handa and Schwartz (1996), Harris (1998), and Lo,

MacKinlay, and Zhang (2002). Briefly, the market price follows a contin-

uous time diffusion (Weiner) process, and a limit order executes when

the market price hits the barrier corresponding to the limit price. More

specifically, the price is pt with dynamics:

dpt = µdt + σdz, (15.11)



PROSPECTIVE TRADING COSTS AND EXECUTION STRATEGIES 159

Figure 15.2. Limit order execution.

where µ is the instantaneous drift and σ is the standard deviation, both

per unit time. In the context of a purchase problem, pt is best thought of

as the best (lowest) ask in the market. The buy limit price is denoted Lt .

If at time t, pt ≥ Lt , then the agent has effectively submitted a marketable

limit order, which achieves immediate execution. A limit order priced at

Lt < pt will be executed during period t if pτ ≤ Lt for any time t < τ < t + 1.

The situation is depicted in figure 15.2. A limit order priced at Lt executes

if the stock price follows path B but not path A. This is a standard problem

in stochastic processes, and many exact results are available.

The diffusion-barrier notion of execution is at best a first approxima-

tion. In many markets, a buy limit order might be executed by a market

(or marketable) sell order while the best ask is still well above the limit

price. We will subsequently generalize the execution mechanism to allow

this. For the moment, though, it might be noted that the present situation

is not without precedent. In the U.S. NASDAQ market, prior to the adop-

tion of the Manning rules, a dealer holding a customer limit order was

only required to fill the order when the opposing quote (the ask, in the

case of a buy order) met the limit price (see appendix A, section A.3).

Like the long-term problem, the present one may be formulated as a

dynamic programming exercise and solved via backward induction. The

value function is denoted Vt(pt) and corresponds to the expected purchase

price, that is, a cost to be minimized. If execution has not been achieved

by the start of period T, then the trader must purchase using a market

order. In this case, VT (pT ) = pT . The first substantive decisions occur if

no execution has been achieved by the start of period T − 1. Should we

use a market or limit order? If a limit order, at what price?

In period T − 1 if a limit order priced at LT−1 executes, the trader

purchases at LT−1; otherwise the problem continues into period T. Let

Pr(Lt hit|pt) denote the probability that a buy limit order priced at Lt
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is hit in the coming period when the current ask is pt . Obviously,

Pr(Lt not hit|pt ) = 1 − Pr(Lt hit|pt ). E[pt+1|pt , Lt not hit] is the expecta-

tion of pt+1 conditional on the initial ask and the limit order priced at

Lt not being hit. Closed-form expressions for these functions are given

in the chapter appendix. With this notation the value function at time

T − 1 is

VT−1( pT−1) = min
LT−1

E[LT−1 Pr (LT−1 hit|pT−1)

+ VT (pT ) Pr (LT−1 not hit|pT−1)]

= min
LT−1

(

LT−1 Pr(LT−1 hit|pT−1)

+ E[pT |pT−1; LT−1 not hit]

× Pr (LT−1 not hit|pT−1)
)

. (15.12)

If LT−1 = pT−1, the trader is essentially purchasing immediately with a

market order. As LT−1 drops (becoming less aggressive), both terms on the

right-hand side change as Pr (LT−1Hit|pT−1) and E[pT |pT−1; LT−1 not hit]

decline.2

An interesting result arises in the zero-drift case. If µ = 0,

pT−1 = E[pT |pT−1]

= E[pT |pT−1, LT−1 hit]Pr(LT−1 hit|pT−1)

+ E[pT |pT−1; LT−1 not hit] Pr (LT−1 not hit|pT−1)

= LT−1 Pr (LT−1 hit|pT−1) + E[pT |pT−1; LT−1 not hit]

× Pr (LT−1 not hit|pT−1). (15.13)

The first equality follows from the martingale property of a zero-drift

Weiner process; the second, from the definition of conditional expecta-

tions; and the third, from the fact that once a driftless random walk hits

a barrier, the expectation of its subsequent position is equal to the bar-

rier level (using the reflection principle; see Karlin and Taylor (1975),

pp. 345–52). By comparing (15.12) and (15.13), we see that the minimand

of the value function is simply pT−1. That is, there is no advantage to using

a limit order, and the trader might as well buy immediately, paying pT−1

with a market order. The objective function here is the expected cost, but

clearly using a limit order would result in a dispersion of outcomes. Thus

an agent who was only slightly risk-averse would prefer a market order to

a limit order. Perhaps not surprisingly, limit order usage in pre-Manning

NASDAQ was reputedly low. If µ > 0, then an immediate market order is

strictly optimal. If µ < 0, there is no interior optimum.
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15.2.2 Random Execution

A more interesting and realistic model results from combining the

diffusion-barrier model with an execution mechanism based on a random

unexpressed reservation price, similar to the device used in the single-

period order choice model (section 12.1). Specifically, suppose that at the

beginning and throughout period t there is a group of potential sellers

monitoring the market. Each seller has a unexpressed reservation price

differential, a threshold such that when the distance between the visible

ask and the buyer’s limit bid price drops to the threshold, she immediately

hits the limit bid. Let ct denote the maximum reservation differential over

the population of sellers over the interval. A limit buy priced at L executes

during interval t if pτ ≤ L + ct for some τ, t ≤ τ < t + 1. Thus, execution can

be viewed as the first passage to a random barrier. For tractability we

assume that the ct are independently and identically distributed, and that

they are also independent of the price. (The independence assumptions

ensure that ct does not enter the problem as a state variable.)

The value function becomes

Vt(pt) = min
Lt

E








Lt Pr (Lt + ct ≥ pt |pt)

+ Lt Pr (Lt + ct hit; Lt + ct > pt |pt)

+ Vt+1(pt+1) Pr (Lt + ct not hit;

Lt + ct > pt |pt)








. (15.14)

The three terms in the brackets correspond to the possible outcomes of

immediate execution, execution during the interval, and no execution.

To develop the model further, it is useful to rework the problem so that

the value function is expressed relative to the current ask price. Define the

relative limit price as ℓt = Lt − pt (ℓt < 0 for a buy order). The cumulative

price change over the interval is δτ = pτ − pt for t ≤ τ < t + 1. Execution

occurs if δτ hits (from above) a barrier located at ℓt + ct , and if ℓt + ct ≥ 0,

execution is immediate. Letting Pr(α hit) denote the probability that δτ hits

a barrier α < 0, equation (15.14) may be written:

Vt(pt) = pt + min
ℓt

E








ℓt Pr (ct ≥ −ℓt)

+ ℓt Pr (ℓt + ct hit; ct < −ℓt)

+ (Vt+1(pt+1) − pt)

× Pr (ℓt + ct not hit; ct < −ℓt)








, (15.15)

where the expectation is over price paths and ct . A relative value function

may be defined as vt = Vt(pt) − pt . It does not depend on pt , and so has

the recursive structure:

vt = min
ℓt








ℓt Pr (ct ≥ −ℓt)

+ ℓt Pr (ℓt + ct hit; ct < −ℓt)

+{vt+1 + E[δt+1|ℓt + ct not hit; ct < −ℓt]}
× Pr (ℓt + ct not hit; ct < −ℓt)








. (15.16)
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Figure 15.3. Value functions for six-period purchase problem.

Letting f (c) denote the density function of ct ,

vt = min
ℓt










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If c is an exponential random variable with density f (ct) = λexp(−λct),

most of the integrals have closed-form representations.

As a numerical illustration, we consider the problem fixing parameter

values at T = 6, µ = 0, σ = 1, and λ = 5. Figure 15.3 plots the value func-

tions for the first five periods. (Recall that at T = 6, we have no choice

but to hit the ask.) For the parameter values chosen, the value functions

have global minima, which are marked with dots. The figure illustrates

several features of interest. First, as we move earlier in the problem, the

value function (expected purchase) declines for all choices of ℓt . This is

reasonable, in that when the horizon is effectively longer, there is a greater

chance that a limit order strategy will at some point succeed. Second, the

limit order price increases as we move closer to the terminal time. Thus,

within the framework of this model, we have demonstrated that it is an

optimal strategy to initially submit limit orders far away from the market

but making them more aggressive as the deadline approaches.

The next figure describes the effects of parameter changes on optimal

limit order placement. Panel A of figure 15.4 illustrates the dependence

on drift. With positive drift, the price is tending to move away from a buy

limit order. Thus, as drift increases, limit prices are more aggressive at
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Figure 15.4. Dependence of limit order strategies on drift and volatility.

all times. Panel B depicts volatility dependence. As volatility increases,

the probability that a random walk will hit a given barrier increases.

Volatility therefore increases the chance of execution, and limit orders are

consequently priced less aggressively. The dependence of ℓt on the c dis-

tribution parameter λ is not depicted but is fairly intuitive. As λ increases,

the distribution becomes more concentrated toward zero. There are likely

to be fewer potential sellers with extreme values, and therefore the optimal

limit orders must be priced more aggressively to succeed.3

15.2.3 Empirical Analysis of Limit Order Execution

The barrier-diffusion model and the extension with random reservation

prices attempt to characterize the probability of execution over the deci-

sion interval. The length of the decision interval, though, is a property

of the application (the strategic problem), not an essential characteristic

of the limit order execution process. It is therefore more useful in prac-

tice to model a limit order’s time to execution using duration analysis.

Duration analysis seeks to characterize wall-clock times between events,

in this case, between the submission of a limit order and its execution.

The fundamentals of duration analysis are discussed in Lancaster (1997),

Greene (2002), and Allison (1995). Lo, McKinlay, and Zhang (2002) apply

these techniques to limit order executions.

The simplest duration specification is the Poisson/exponential model

discussed in section 6.2. In the present context, it might arise as follows.

Let τ denote the execution duration, the time between the submission and

execution. In the case of a buy limit order, if it is alone at the best bid (i.e., it

is the only order) and if market sell orders arrive with Poisson intensity λ,

then τ is exponentially distributed with parameter λ.

The exponential model is the simplest duration specification, but there

are many others. Among them is the diffusion-barrier model used here.

Lancaster (1997) discusses its characteristics as basis for duration model-

ing. One distinctive feature is particularly relevant. If the diffusion price

process has zero drift, then it will eventually (with probability one) hit
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any finite barrier. This implies that any limit order will eventually exe-

cute. This is also true of the exponential model (if λ > 0). In the diffusion

model with nonzero drift, however, this is not the case. For example, in a

limit buy situation with positive drift, there is a positive probability that

the limit order will never execute.4

The barrier-diffusion model should be relatively easy to apply because

the drift and volatility can be estimated directly from a sample of prices.

In their sample, however, Lo et al. find that this model (which they call the

first-passage time model) underestimates actual times to execution, that is,

that the model is too optimistic, and that a generalized gamma alternative

performs much better. Related work includes Challet and Stinchcombe

(2003).

An important consideration affecting most duration models is censor-

ing. This may involve observations at the start of the sample, for example,

limit orders that were already on the book at the start of a sample and

for which we have no record of the submission time. Censoring may also

involve observations removed from the sample before the duration event

occurred, for example, limit orders that are canceled. Econometrically,

censoring is easily dealt with as long as the censoring process is inde-

pendent of the duration being modeled. To illustrate the nature of the

dependence, consider a medical study of mortality subsequent to diagno-

sis, where patients might drop out of the study because they move away

and can no longer be followed by the investigator. The duration of a sub-

ject whose move results from a job transfer can reasonably be presumed

to have been censored independently of the mortality process. This is not

the case for a subject who moves to be closer to family because he is feeling

poorly.

Censoring is important in limit order analysis because the vast pre-

ponderance of limit orders are canceled. In their sample, for example,

Hasbrouck and Saar (2003) find that only roughly 13% of submitted limit

orders are executed. The remainder are canceled, either explicitly or by

expiration at the end of the day. Although tractability might dictate assum-

ing otherwise, however, actual execution and cancellation processes are

likely to be strongly dependent. One need look no further than the optimal

strategies depicted in figure 15.3. Limit orders are canceled (and resub-

mitted with higher prices) when the price has moved away from the limit

order, that is, because the likelihood of execution has fallen.

Appendix

Lancaster (1997) discusses the Weiner process barrier model in depth.

The following are restatements of Lancaster’s results in terms of the

present problem. In what follows, the price is assumed to evolve as
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dpt = µdt + σdz. A limit buy order is presumed to be priced at L ≤ pt .

The time interval is assumed to be one unit.

For a limit buy order priced at L,

Pr
(

Hit|pt , L
)

= 1 − �

(
pt − L + µ

σ

)

+ exp

[
2µ(L − pt)

σ2

]

φ

(
L − pt + µ

σ

)

.

(15.18)

If the limit order is not hit, the density function for the end-of-period

price is:

f (pt+1|pt , L, No Hit)

=
−exp

[

−2µ(pt − L)

σ2

]

φ

[
µ + (L − pt) + (L − pt+1)

σ

]

+ φ

[
µ − (pt+1 − pt)

σ

]

σ(1 − Pr (Hit|pt , L))
.

(15.19)

The corresponding expectation is:

E[pt+1|pt , L, No Hit]

= µ +
2(pt − L)exp

[−2µ(pt − L)

σ2

]

�

[
µ − (pt − L)

σ

]

(1 − Pr (Hit|pt , L))
. (15.20)

Additional results are developed in the Mathematica notebook associated

with this chapter.



Appendix: U.S. Equity Markets

This appendix is an overview of the organization and recent history

of U.S. equity trading. Many discussions of this material focus on the

institutions: “listed” trading and the New York Stock Exchange (NYSE);

and, “unlisted”/over-the-counter market (NASDAQ). These institutions

are still important, but they are not as central as they once were, nor are

they as well defined. Accordingly, it is better to start from a functional

perspective that establishes the players and their relationships.

A.1 Functional Overview

The players in and components of U.S. equity markets may be summarized

as follows:

• The customers are individuals and institutions (pension funds,
mutual funds and other managed investment vehicles, collec-
tively known as the buy side). The distinction between retail and
institutional customers is mainly one of size, and should not be
construed as naive versus sophisticated. Furthermore, customers
often actively compete in the market-making process.

• Brokers act as agents for customer orders and often provide non-
trading services as well (such as advice and research). Brokers and
dealers are collectively known as the sell side.

• The market venues are simply places (real or virtual) where trades
occur. The principal venues are:

• The exchanges (also known as the listed market). Most
important, the NYSE, but also including the American Stock

166
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Exchange, Cincinnati and the regional stock exchanges
(Philadelphia, Boston, Chicago, Pacific).

• NASDAQ (the “unlisted” market).
• Alternative trading systems (ATSs) include electronic com-

munications networks (ECNs, e.g., Inet, Archipelago) and the
crossing networks. Most ECNs are constituted as electronic
limit order markets.

• The primary regulator of trading in U.S. equity markets is the
Securities and Exchange Commission (SEC). In 1933, Congress
created the SEC and delegated to it primary authority. The SEC
has in turn delegated authority to industry entities known as
“Self-Regulatory Organizations” (SROs). The NYSE and National
Association of Securities Dealers (NASD) are the principal SROs.
Congressional mandates on security markets generally take the
form of broad directives that leave details up to the SEC, with the
notable recent exception of decimalization (discussed later).

• Market data systems consolidate and disseminate trade reports,
quotes, and so on.

• Intermarket linkage systems connect the trading venues and per-
mit one trading venue to send an order to another for purposes of
execution (“access”). As markets have become more fragmented,
these systems have become very important, arguably transcending
the importance of any single venue.

We now turn to a more detailed discussion of the components, beginning

with the most important and complex: the market venues.

A.2 The NYSE

Historically, the NYSE dominated U.S. equity trading. An economist

might describe it as a multiproduct firm, producing listing, regulatory, and

trading services. The present analysis focuses mainly on the NYSE’s trad-

ing activities.1 NYSE trading protocols are complex because the exchange

is a hybrid market that features an open outcry system, a dealer market,

and an electronic limit order book. These mechanisms are not simply run

in parallel isolation but are integrated in a fashion that attempts to balance

their needs and features. The amalgam of these systems is now designated

as the NYSE Hybrid Market (SM). It is perhaps easiest to approach these

diverse mechanisms and their interaction by reviewing them in the order

in which they arose historically.

A.2.1 The NYSE as an Open Outcry (Floor Market)

The NYSE was founded in 1792 and first functioned as an open out-

cry market (section 2.2). Floor trading procedures reflect the following

principles.
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• Price priority. As an illustration, someone who is bidding 101
should have priority over someone who’s bidding 100. Here, it
might be thought that self-interest of sellers would ensure price
priority: Why would anyone sell at 100 when they could sell
at 101? If the broker is acting as agent, he may care more about
getting a customer order filled quickly than getting the best price,
particularly if the customer can’t easily monitor the market. The
rule of price priority gives the other side (in this case, the bidder)
the right to protest (and break) the trade. A trade at 100 when a
buyer is bidding 101 is called a trade-through. The prevalence of
trade-throughs has recently reemerged as an important regulatory
concern (see section A.8).

• Time priority. First-come, first-served is a time-honored principle
that rewards prompt action. In the present case, the first member
to bid or offer at a price gets the first trade at that price. Beyond
that, there is no time priority. In a crowd, it is relatively easy to
keep track of who was first, but more difficult to remember who
was second, third, and so on.

• Trade reporting. The practice of public last-sale reporting and dis-
semination of bids and offers date from the floor phase of the
NYSE’s history (and predates by many years the establishment
of any external regulation).

A.2.2 The Dealer (Specialist)

The dealer part of the picture emerged in the 1870s. According to legend,

a member broke his leg and while constrained by immobility decided to

specialize in certain selected stocks. The practice was adopted by more

ambulatory brokers, and the specialist system was born.

A specialist trades on his own account and is not an employ of the

exchange. Specialists were originally small proprietorships, but recent

consolidations have left only seven specialist units, some of which are

subsidiaries of other financial firms. There is currently one specialist per

stock. This has given rise to the expression monopolistic specialist. The

specialist does enjoy some market power, but the qualifier greatly exagge-

rates its extent. The specialist participation rate (specialist purchases +
specialist sales)/(2 × total volume) is about 15%.

The specialist’s primary responsibility is to maintain a fair and orderly

market. There a large number of rules that specify what the specialist

should do (affirmative obligations) and what he should avoid (negative

obligations). Among the specialist’s affirmative obligations are duties to:

• Make a market, that is, bid and offer on his own account when
necessary. The specialist has the sole authority and responsibility
for the quotes.

• Act as agent for the limit order book and market orders. The spe-
cialist’s role as agent for public orders became more prominent
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with the prevalence of electronic delivery. The exchanges order
delivery and routing systems (notably SuperDOT) send virtually
all orders that don’t require a broker’s human attention to the
specialist’s workstation (DisplayBook).

• Maintain price continuity, that is, ensure that successive price
variations are small.

Among the negative obligations, the specialist is:

• Prohibited from trading ahead of a public customer at the same
price (e.g., buying at 100 when a customer is bidding 100).

• Discouraged from “trading in a destabilizing fashion” (buying on
an uptick or selling on a downtick).

A.2.3 The Limit Order Book

The book is maintained by the specialist. In floor trading protocols, the

specialist acting as agent for the book is essentially considered a single

floor trader. One implication of this is that although price/time priority

is strictly observed within the book, the book as a single entity might not

have priority over floor traders who arrived considerably after the limit

orders in the book were posted.

A.2.4 The Bid and Ask Quotes

The specialist sets the bid and ask quotes. In doing so, he might be rep-

resenting his own interest, orders on the book, bids or offers that a floor

broker might want displayed, or a combination of all of these. If there are

orders on the book at the bid or ask, they must be represented (under the

SEC’s Quote Display Rule), but the display is not automatic. Historically,

the specialist could exercise considerable discretion in the display of cus-

tomer limit orders. Presently, limit orders that better the existing quote

must be executed or displayed within 30 seconds.

A.2.5 Executions

The NYSE has historically aggressively adopted technology to transmit

orders and information but has been disinclined to automate the execu-

tion of orders. This reluctance has been justified by the necessity of human

(specialist) judgment in the maintenance of a fair and orderly market. In

response to competitive pressure and a customer clientele that placed a

premium on speed of execution, however, the NYSE began to offer auto-

matic execution. The NYSE Direct+ system came online in 2000 and was

quickly judged a success. It has since been refined, and is now an integral

part of NYSE trading.
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Non-Direct+ market orders are delivered to the specialist’s post and

do not execute automatically. Acting as agent for the order, the specialist

effectively auctions it off. The order may execute against an order on the

book, against an order represented by a floor broker. The specialist may

also act as counterparty himself.

Large executions (block trades) have traditionally had a size threshold

of 10,000 shares, but nowadays many orders of that size would simply

be allowed to follow the electronic route of small orders, as described.

The terms of large orders are usually negotiated by customers and their

brokers. Often the process involves the broker guaranteeing the customer

a price and then working the order (feeding it to the market) slowly over

time to minimize price impact. The general process is the same whether

the stock is listed on an exchange or NASDAQ. (See following discussion.)

When a broker has located both a buyer and seller for a block, he may,

under certain circumstances, “cross” the block, that is, execute the trade

without other buyers and sellers stepping in to take part or all of one or

both sides (the “clean-cross rule”). Many markets (including the Euronext

markets) have similar arrangements.

A.2.6 Opening and Closing Procedures

The opening procedure is effectively a single-price call auction. Brokers

submit customer orders. The specialist tries to find a single price at which

supply equals demand. To maintain a fair and orderly market, and in

accordance with various other rules, the specialist may buy or sell at the

open. A common scenario is one in which the specialist buys or sells a

relatively small amount to resolve a minor buy-sell imbalance and clear

the book at the opening price.

The closing procedure is sometimes described as an auction. Like any

double-sided clearing, it balances expressed supply and demand, but

beyond this, it bears little resemblance to any other auction procedure.

The specialist is not relieved of responsibility for price continuity, which

implies that he must not only balance static supply and demand but also

establish a transition path to the closing price. The rules regarding entry

and cancellation of orders to be executed “at the close” are complex in

their specifics, but are generally aimed at early detection of imbalances.

By way of contrast, the closing auction procedure in the Euronext markets

involves cessation of continuous trading, followed by a five-minute win-

dow to enter orders, and a single-price clearing that is essentially identical

to the opening mechanism.

A.2.7 Governance and Alliance

In April 2003, it was disclosed that the NYSE was investigating five

of its seven specialist firms for violations of its trading rules. The SEC
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also initiated an investigation. The SEC’s investigation lasted into 2005

and resulted in penalties being assessed not only against the specialists

but also against the exchange itself for failing to adequately police their

activities.

At the same time the specialist investigations were unfolding, the NYSE

suffered a governance crisis. The exchange was (and still is, at present)

organized as a not-for-profit corporation, largely governed by its mem-

bers. This simple statement, however, fails to convey the extent of the

members’ divergence of interests and the consequent factions, coalitions,

and politicking that achieved the consensus necessary for operation. The

exchange’s trading practices were clearly subject to external review and

oversight, but the internal governance was much more opaque (certainly

in comparison with the practices it mandated for its listed companies). In

late summer 2003, public revelation of its CEO’s compensation arrange-

ments triggered internal dissent and attracted unprecedented external

criticism. The NYSE reorganized its governance procedures, and by the

end of the year had installed as a new CEO John Thain, a strong proponent

of automation.

In 2004 Thain proposed two connected initiatives. The first was demu-

tualization of the exchange, conversion into a for-profit corporation with

the members as the initial shareholders. Demutualization had been accom-

plished by other exchanges, had earlier been considered by the NYSE,

and was not a surprising suggestion. The second initiative, however, was

more unexpected. This was a proposed merger between the NYSE and

Archipelago, which operated a successful ECN. Both goals were accom-

plished. A parent corporation (the NYSE Group) operates the NYSE and

Archipelago (now known as NYSE Arca). NYSE Group is a publicly traded

corporation (under the ticker symbol NYX). The NYSE Group has recently

proposed merger with Euronext.

As profound as the NYSE’s changes were (and continue to be), however,

the forces of transformation hit earlier and more powerfully at the other

major U.S. equity market, NASDAQ.

A.3 NASDAQ

Historically, NASDAQ was primarily a dealer market with geographically

dispersed dealers linked by electronic systems that displayed bid and ask

quotes and last sale prices (Smith, Selway, and McCormick 1998). As

of 1990, NASDAQ was distinctly a dealer market (see section 2.3). It was

transformed in the 1990s by economic, political, and regulatory pressures.

The changes greatly enhanced customer protection and reduced the power

and profitability of NASDAQ members (brokers and dealers). The changes

also weakened the authority and reach of NASDAQ as a central market

operator. They unfolded in the following steps.
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A.3.1 The Manning Rules

NASDAQ (like most dealer markets) traditionally gave little protection to

customer limit orders. For example, supposing that the best market quotes

were 100 bid, offered at 102, a NASDAQ dealer who received a customer

limit order to buy at 101 did not have to display the order as a new, more

aggressive quote. The dealer could furthermore buy for his own account at

prices below 101 (thus trading through the customer order). The customer

was only entitled to an execution when the market offer price dropped to

101 (essentially making the customer order marketable). The Manning

rules were adopted in 1994 and 1995 by NASD to prohibit brokers from

trading ahead of or through their customer limit orders.

A.3.2 The Collusion Charges

In 1994, a Vanderbilt University academic study revealed an interesting

regularity. Christie and Schultz (1994) found that despite the 1/8 ($0.125)

tick size used at the time in U.S. equity markets, NASDAQ dealers tended

to bid and offer on a 1/4-point grid. They suggested that this might be a

coordination device to maintain spreads at 1/4. This would be profitable

for dealers because most retail trades occurred at the bid or and the ask.

Furthermore with weak limit order protection (pre-Manning), there was

little opportunity for customers to use limit orders to compete with dealer

quotes.

Christie, Harris, and Schultz (1994) describe the aftermath. They had

sought comments from industry participants, and, after the findings

were peer-reviewed and accepted for publication, Vanderbilt issued a

press release on May 24, 1994. Also on May 24, a meeting of major

NASDAQ dealers was convened at the offices of Bear Sterns in New

York. At this meeting, a NASD official encouraged dealers to reduce their

spreads. The stated reason for this exhortation was an earlier rule change

(January 1994) to a NASDAQ automatic execution system (SOES), not

the Christie-Schultz study. Whatever the motivation, on May 27, spreads

began to drop dramatically.

NASDAQ authorized an external review of the matter (the Rudman

Commission); the SEC and the Department of Justice (DOJ) opened inves-

tigations; and civil lawsuits were filed against the NASDAQ dealers (on

behalf of customers). In the sequel:

• The Rudman Commission examined NASD’s governance and
recommended that market operation and market regulation be sep-
arated. The latter was spun off as NASD. The separation was (and
is) structurally complex and is now enmeshed with NASDAQ’s
demutualization.

• The SEC and DOJ investigations were concluded and settled. The
investigatory report (U.S. Securities and Exchange Commission
1996b) describes the commission’s findings.
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• The civil law suits were consolidated and eventually settled in
May 1999 for slightly under $1 billion.

A.3.3 The SEC’s Rule on Order Execution Obligations

The SEC and DOJ investigations served to support constructive reform

going forward. The most striking examples of this are rules 11Ac1-1 and

11Ac1-4 (now designated rules 602 and 604) on Order Execution Obliga-

tions. The extent of these rules was not limited to NASDAQ; they applied

to all markets. They are most clearly understood, however, in the context

of NASDAQ regulation. There are two components, the Display Rule and

the Quote Rule. As stated in the final rule release (U.S. Securities and

Exchange Commission (1996)):

[The Display Rule] require[s] the display of customer limit orders
priced better than a specialist’s or over-the-counter (“OTC”) market
maker’s quote or that add to the size associated with such quote. . . .

[The Quote Rule] require[s] a market maker to publish quotations
for any listed security . . . and to make publicly available any supe-
rior prices that a market maker privately quotes through certain
electronic communications networks (“ECNs”). (page 1)

The Display Rule strengthened NASDAQ customer limit orders beyond

the protections afforded by Manning. When display is required, a cus-

tomer limit order can become the best bid or offer in the market. The Quote

Rule was designed to curb a practice whereby NASDAQ dealers would set

wide quotes that were visible to the public, but narrow quotes in the inter-

dealer and institutional markets that were not visible to the public. This

practice remains common in many other dealer markets (including foreign

exchange and bonds).

A.3.4 SuperMontage

NASDAQ is largely defined by its information systems. The modern

NASDAQ essentially came into being with the 1971 initiation of the quote

montage system, which allowed for screen display of dealer quotes. Sub-

sequently added systems allowed for trade reporting and confirmation

(ACT), interdealer communication of trading commitments (SelectNet),

small retail order execution (SOES), and so on.

At present, most of the functionality in these disparate systems is now

consolidated in one system, SuperMontage. Conceptually, SuperMontage

comes closest to resembling an electronic limit order book for dealers.

That is, the display and trading protocols are similar to what would be

found in an electronic limit order book, except that customers are not

permitted direct access to the system. The system was designed to facili-

tate established NASDAQ practices like preferencing, and as a result the

actual trading protocols are quite complex.
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A.3.5 Governance and Alliances

Like the NYSE, NASDAQ entered the 1990s as a not-for-profit cor-

poration owned by its members. When NASDAQ (the market operation)

was divorced from NASD (the regulatory arm), it also entered onto a path

of demutualization (conversion into a stockholder-owned for-profit cor-

poration), a process that is still in progress. En route, NASDAQ sold equity

stakes to outside investment groups.

Although ultimately winding up in a similar stance, NASDAQ’s

alliances over the past 10 years have been more numerous and more varied

than the NYSE’s. In 1998 NASDAQ announced that it would purchase the

American Stock Exchange (Amex). The proffered strategic rationale was

that a combination would be able to provide a broad array of dealer and

exchange markets in stocks and derivatives. The two units were never inte-

grated, however, and in 2003, Amex was sold. NASDAQ also established

a link with Optimark (an innovative electronic market), but for rea-

sons unrelated to the connection Optimark was not successful. NASDAQ

recently acquired the INET (formerly Island/Instinet) and Brut ECNs.

A.4 The New Trading Systems

With the advent of communications and Internet technology in the

1990s, there arose considerable interest in devising new electronic trading

mechanisms.2 The general structure of U.S. regulation, however, was not

well suited to dealing with these developments. For regulatory purposes,

the principal trading institution was the national securities exchange. As

this term was defined in narrow terms, the new entrants did not obvi-

ously belong in that category (or any other). It was also widely recognized

that classification as an exchange brought with it considerable regulatory

overhead.

The SEC initially accommodated the many new systems with “No

Action” letters that provisionally authorized operation. But it soon

became clear that a more consistent and cohesive regulatory structure

was called for. The SEC’s rule on the Regulation of Exchanges and Alter-

native Trading Systems (Regulation ATS) established a new framework.

As described in the executive summary to the final rules (U.S. Securities

and Exchange Commission (1998)), the key provision was,

To allow new markets to start, without disproportionate burdens,
a system with less than five percent of the trading volume in all
securities it trades is required only to: (1) file with the Commission
a notice of operation and quarterly reports; (2) maintain records,
including an audit trail of transactions; and (3) refrain from using
the words “exchange,” “stock market,” or similar terms in its name.
(Section II.c)
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Although there is considerable overlap between the ECN and ATS cate-

gories, many ATSs do not display orders and are therefore not considered

ECNs. Examples include most crossing markets (section 2.6). The rule

successfully provided regulatory latitude during an unusually active time

in trading system development.

A.5 Decimalization

By the 1990s, most of the world’s financial exchanges used prices quoted

in regular (decimal) form. U.S. equity trading, however, was still being

conducted in eighths (of a dollar). Although this might have been viewed

as an annoying anachronism, the NASDAQ collusion investigations gave

prominence to the possibility that a market’s tick size might have a large

effect on trading costs. To take the simplistic view, if the bid and ask

are set by insiders, and outside customers can trade only at these prices,

insiders would seek to keep spreads wide. The tick size sets a floor on how

narrow the spreads can become. It was conjectured that if the tick size were

mandated to be smaller, spreads would fall to the cost of providing dealer

services.

Positioned as a populist issue, the outcome of the debate was in little

doubt. Congress passed the Common Cents (cf. “sense”) Pricing Act of

1997. The NYSE switched to sixteenths and then, as required by the law,

to pennies. Spreads for most stocks declined (Stoll and Schenzler (2002)).

Thus, decimalization is clearly viewed as having been beneficial to retail

customers. The effects on institutional trading costs and practices, how-

ever, have been less clear (Goldstein and Kavajecz (2000); Werner (2003)).

A.6 The Consolidation and Fragmentation Debate

Consolidation or centralization brings all trading interest together in one

place, thereby lessening the need for intermediaries. As a regulatory prin-

ciple, however, it favors the establishment and perpetuation of a single

trading venue, which may discourage innovation. Allowing new entrants

(like the ATSs) fosters competition among trading venues, but at any

given time the trading interest in a security is likely to be dispersed

(fragmented) among the venues, leading to increased intermediation and

price discrepancies among markets. The growing role of ATSs, increasing

competition among market venues, and the experience of the NASDAQ

reforms brought these tensions to the fore.

A public debate was occasioned by the call for the repeal of the NYSE’s

Rule 390. This rule embodied the principle that NYSE members were pro-

hibited from conducting trades off the floor of the exchange. At one time,
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the rule had great force and reach, but by the 1990s it had been weakened

considerably. It nevertheless stood as strong symbol of the exchange’s anti-

competitive power. The relationship of the NYSE (as the self-regulatory

organization) and the SEC (as the final authority on approval of rules)

required the NYSE to propose the rule change to the SEC. The SEC then

solicited comment on the proposal and finally took action (modification

and approval, in this case).

In soliciting comment, the SEC took the occasion to raise broader

issues. In the “Rule 390 Concept Release” (U.S. Securities and Exchange

Commission (2000)), the SEC laid out terms of the debate and raised the

relevant policy questions. At about the same time, the U.S. Senate Banking

Committee conducted hearings in New York on the Competitive Market

Supervision Act (on February 28, 2000) and on the Financial Marketplace

of the Future (February 29, 2000). Referred to as the “World Trade Center

hearings,” these meetings are noteworthy because for a brief moment it

appeared that there was an emerging consensus in favor of a consoli-

dated limit order book (CLOB). For reasons possibly having to do with

uncertainties over how such a system might affect institutions’ competi-

tive positions, however, the momentum suddenly abated. Not since then

has a CLOB been seriously considered as the sole mechanism for U.S.

equities trading.

A.7 Access and Intermarket Linkage Systems

Accessing a market generally refers to a constructive interaction with the

market, particularly the transmission of a marketable (immediately exe-

cutable) order to the venue. An access system is therefore more powerful

than a market data system, which only offers a view of the trading activity.

Broad access facilitates competition among venues, and can so promote

virtual consolidation of a fragmented market.

For a broker to have direct access to a trading venue, it has usually been

necessary for the broker to be a member (if the venue is an exchange) or

a subscriber (if the venue is an ECN). A broker will usually be linked to

most if not all trading venues, thereby providing maximum flexibility in

routing a customer order.

Other links connect the trading venues directly. The most venerable of

these is the Intermarket Trading System (ITS). ITS links the NYSE and the

regional stock exchanges. It allows brokers at one exchange to send orders

directly to another. NASDAQ’s SuperSOES system also provides access

(among other things). It can automatically generate executions between

different market makers, between a broker and a market maker, or even

between a broker and an ECN.

Intermarket access systems became flash points for intervenue

disputes. A major point of difference arose from the relative speeds of
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electronic and floor-based venues. To avoid trade-throughs, the former

may be forced to send orders to the latter at a penalty in response time that

some traders felt is substantial. The problem has been largely addressed,

however, with the order protection rule component of Regulation National

Market System (NMS), to which we next turn.

A.8 Regulation NMS

After the rescission of NYSE Rule 390, the SEC next addressed

the balance between consolidation and fragmentation in fall 2003.

Following extensive internal discussion, on February 26, 2004, the SEC

released for public comment a group of proposed rules collectively named

“Regulation NMS” (U.S. Securities and Exchange Commission (2004a)).3

The proposed rule was extensive in scope and attracted an exceedingly

large number of comments. The SEC held public meetings, modified the

rule, and reproposed it, allowing for another comment period. Following

more heated debate, the final rule was adopted in June 2005 (U.S. Secu-

rities and Exchange Commission (2005)), but only over the strong dissent

of two commissioners (Glassman and Atkins (2005)).

Regulation NMS has five parts:

1. The order protection rule: Market centers are responsible for tak-
ing steps to prevent the occurrence of trade-throughs. (This rule is
sometimes described, incorrectly, as trade-through prohibition.)

2. The access rule: Markets must allow nonsubscribers (outsiders)
to submit executable orders on the same terms as their sub-
scribers. The rule also capped the fee that can be charged for
this access.

3. The subpenny rule: Stocks trading above $1 cannot be quoted in
increments smaller than 1 cent.

4. Revised market data rules that define how market data revenues
are to be allocated to trading centers.

5. Reorganization of rules (“to promote greater clarity and under-
standing”).

The first four of these are substantive. The fifth was a useful updating, and

attracted no comments (U.S. Securities and Exchange Commission (2005),

p. 283). The rules apply to diverse aspects of market operation but share

a common purpose, namely, promoting the efficiency of a market that is

fundamentally fragmented. The rules define, for the moment at least, the

limits to which a single trading venue can wall off its operations from the

rest of the market.

The order protection rule had the most interesting evolution and

engendered the most heated discussion. Trade-throughs were generally

acknowledged to be indicative of a poorly integrated market, but some
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doubted their frequency, magnitude, and economic significance, and

therefore the need for regulation. One view was that the broker’s agency

duty already covered the matter, for example, that a broker who executed

a customer market purchase order at 100 when there was an available

offer at 99 was not giving his client “best execution.” The Commission

was also ultimately concerned, however, with the order traded through

(in this example, the offer at 99). It was felt that trade-throughs would

discourage the submission of visible limit orders and therefore that the

competition to establish aggressive bids and offers would be impaired.

It was noted earlier that existing market linkage systems had difficulties

with the differing degrees to which participants valued response speed.

Trade-through avoidance may require a venue to send an order elsewhere.

If the destination venue delays responding to the order, the market might

grind to halt, with all participants being forced to wait for the slowest

respondent. The Commission’s solution was to make a venue’s best bid

and offer protected against trade through only if they were available for

automatic execution. This effectively requires venues to establish rapid

and reliable links.

The access rule prevents venues from establishing differential terms

on which they handle subscriber and nonsubscriber orders. The cap on

access fees avoids the distortion that might result if execution costs were

net of access fees, but the quoted bids and offers did not include these

fees. In setting a lower limit on the price increment, the SEC essentially

decreed that markets should not compete on the tick-size dimension.4

The market data rule is complex in its particulars but is broadly

intended to reward a venue for the informational value of the data it pro-

vides. In trade reporting, the formula is weighted to reward both trade

frequency and trade volume. The part of the rule dealing with quotes,

though, represents a more significant innovation. Under the rule, mar-

kets are rewarded for matching the best visible bids and offers and also

for improving on these prices. The rule marked a step forward from pre-

existing allocational practices that were unrelated to informational value

at best and distortionary at worst.

Overall, Regulation NMS represents a significant evolutionary step in

regulators’ attempts to address market failures that might result in higher

costs to traders or impairment of the informational value of prices in a

hybrid market.
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Notes to Chapter 2

1. Historically, limit order books were usually maintained on paper or chalk-

board. The descriptor electronic differentiates the modern form of these books. It

is increasingly being dropped because it has become superfluous: “Electronic limit

order book” has gone the way of “electronic computer.”

2. A similar situation recently occurred on the Tokyo Stock Exchange. “During

the initial public offering of J-Com, . . . an employee at Mizuho, a subsidiary of

the Mizuho Financial Group, mistakenly typed an order to sell 610,000 shares at

1 yen, or less than a penny each, instead of an order to sell one share at 610,000 yen

($5,057) as intended, the brokerage said” (Fackler (2005)). The chair of the Tokyo

Stock Exchange resigned in the aftermath (Morse (2005)).

3. At one point there were over 100 U.S. regional stock exchanges (U.S. Secu-

rities and Exchange Commission (1963), p. 948). Arnold et al. (1999) state that

by 1940, there were eighteen, and this number dropped to seven by 1980 (mainly

through mergers). Recent closures of trading floors include the Vancouver Stock

Exchange (1989), the Toronto Stock Exchange (1997), the Tokyo Stock Exchange

(1999), and the equity floor of the Pacific Stock Exchange (2001). There have been

few (if any) start-ups of floor-based exchanges.

4. For example, suppose that the lowest price in all the bilateral deals is $10. If

there exists someone who wanted to buy (but didn’t) at a price above $10, or sell

(but didn’t) at a price below $10, then the total trade surplus is not maximized.

5. In Securities and Exchange Commission v. Moises Saba Masri, et al., the

SEC alleged that the defendants entered large buy orders near the close in a stock

on which they had written a large number of (uncovered) put options and that by

artificially boosting the price of the stock they could prevent exercise of the options

(U.S. Securities and Exchange Commission (2004b)). In SEC v. Rhino Advisors, Inc.
and Thomas Badian, the SEC charged that the defendants had sold short a stock

in attempt to depress the price, in an attempt to increase the number of shares

they would obtain under the terms of a conversion (U.S. Securities and Exchange

Commission (2003)).

6. An order surcharge that increased as time to the next scheduled clearing

declined was used by Wunsch Auction Systems (subsequently the Arizona Stock

Exchange, now defunct), an alternative trading system for U.S. equities.
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7. Under regulatory pressure, in 1991 U.S. Treasury security dealers began to

publish bids, offers, and trade prices in the interdealer market on the GovPX system.

The success of the GovPX initiative was later used to support the implementation of

the TRACE (Trade Reporting And Compliance Engine) for municipal and corporate

debt securities (Levitt (1999)).

Note to Chapter 4

1. Cos(t) in this formulation is a deterministic component of the series. Such

components can also arise from time trends (linear or otherwise). When the deter-

ministic component is periodic (like Cos(t)), it is said to be seasonal. Although the

term originated in descriptions of monthly and quarterly patterns, it is now used to

describe recurrent patterns at any frequency. Financial market data, for example,

are said to exhibit intraday seasonalities: Trading volumes and return volatilities

tend to be elevated at the start and end of trading sessions.

Note to Chapter 5

1. These remarks presume that trading has no ultimate impact on the real cash

flows of the security. One possible mechanism that might lead to an interaction (at

least, in the case of equity) would result from a purchaser who intends to managerial

control over the enterprise. Alternatively, a seller (or more likely, a short seller) who

succeeds in temporarily driving the price down may thereby cause the firm to lose

customers who take the stock price as a signal of the firm’s long-term viability.

Note to Chapter 6

1. Specifically, because the basic model does not allow for nonevent days, α = 1.

Next note that µ functions differently in the two models. In the basic model, it is

simply the probability that a trader is informed: µ(in the simple model) = PIN. In

the present model, though, µ is an expected arrival rate (informed traders per unit

time). To obtain PIN (a probability per trade), it must be normalized by the arrival

rate of all trades (the denominator in PIN ). Alternatively, if we scaled the time unit

in the arrival rates so that the total arrival rate was unity, then µ (rescaled to this

time unit) would equal PIN.

Note to Chapter 9

1. Lee and Ready (1991) assess the merits of quote comparison and tick test

procedures. Among other things, they suggest that in working with NYSE data,

trade prices be compared to midpoints prevailing five seconds previous (based on

reported times). There have been many improvements in the reporting procedures

however, and in more recent data signing based on reported times (with no lag)

is likely to be more accurate (Bessembinder (2003a); Piwowar and Wei (2006)).

Odders-White (2000) compares the trade signs imputed from quote data with the

directions of the actual underlying orders.
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Note to Chapter 10

1. The mere fact that no convergent representation exists does not preclude

computation of sample estimates. Unlike, for example, the case of perfect collinear-

ity in a set of regressors, there is no obvious computational problem.

Note to Chapter 11

1. The details are as follows. The characteristic function of a random variable

X is defined as φ(t) = EeiXt where i =
√

−1. If X ∼ N (µ, σ2), then φ(t) = eiµt−σ2t2/2.

Letting t = iρ yields Ee−ρX = e−µρ+σ2ρ2/2. The coefficient of absolute risk aversion is

defined for a general utility function as −U ′′/U ′. For the exponential utility function

−U ′′/U ′ = ρ.

Note to Chapter 12

1. This strategy, called lurking, may be very effective. Rust, Miller, and Palmer

(1993) describe a tournament of automated double-auction algorithms in which a

lurking strategy was the winner.

Notes to Chapter 15

1. It might be claimed that the permanent/transitory distinction is essentially

a semantic one, for example, that a transitory impact that remains for a month is

effectively permanent from the perspective of a purchase program that will exe-

cuted over one day. The relevant horizon, however, is not the trading period but

the holding period. Suppose the purchase pushes up the security price by $1. If

the increase is truly permanent, the dollar will be realized (in cash) when the secu-

rity is subsequently sold. If the price reverts before the sale, however, the position

incurs a $1 loss. Viewing long-term (but ultimately transient) impacts as permanent

causes trading costs to appear smaller than they actually are.

2. In practice, a trader might price a limit order above the current ask (L > pt )

if she thought that that the ask might move before her order could be conveyed to

the market and executed. Petersen and Sirri (2002) discuss such orders.

3. The model used in this section is cast in the framework of Harris (1998),

with the following essential differences. Harris permits only discrete limit prices.

(Prior to penny pricing in the U.S. equity markets, the tick size, generally $0.125,

was large relative to short-term price volatility.) Harris also assumes a different

execution mechanism, based on the beta distribution. Finally, Harris considers

alternative trading objectives.

4. Most of the distributions commonly used in duration analysis imply eventual

execution. The reader/trader is cautioned against relying on these models beyond

the durations found in the estimation sample.

Notes to Appendix

1. Hasbrouck, Sofianos, and Sosebee (1993) and Teweles and Bradley (1998)

give basic background on the NYSE, but neither source is current. The NYSE
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Constitution and Rules (New York Stock Exchange (2005)) is authoritative and

complete in the details, but it is difficult to distill from this document an overall

picture of how the market really functions. The clearest description of NYSE pro-

cedures I have encountered is the exchange’s Floor Official Manual. This manual

is a complete and well-organized account, but is not circulated externally.

2. The question of which was the first electronic stock exchange has no clear

answer. One strong contender, though, is Instinet. Instinet began operation in 1979

as an electronic limit order book for institutions (mutual funds, pension funds, etc.).

Instinet’s growth accelerated when it began to allow participation by NASDAQ

market makers. The NASDAQ market makers used the system essentially as their

interdealer market, and this clientele became a substantial, perhaps the dominant,

group of Instinet participants. Significantly, Instinet did not open itself to retail

traders. This proved to be a forgone opportunity, as newer entrants successfully

cultivated the retail business.

3. In the 1975 Securities Act, Congress directed the SEC to foster a “national

market system” (NMS). The phrase has probably occasioned more commentary

than any other expression in U.S. market regulation. It has been interpreted at one

extreme as suggesting a sort of loose communication among trading venues, and at

the other extreme as a clear charge for a CLOB. The inclusion of the expression in the

title of the proposed rule is significant, though, because it prominently asserts the

rationale for the rules in a way that connects them to specific authorizing legislation.

4. Although not cited in the Commission’s discussion, one example may illus-

trate the need for such a rule. ESpeed, an electronic trading system for U.S. Treasury

bonds, had offered its users the ability (by paying a higher commission) to slightly

improve on visible bids and offers, thereby gaining priority over them. The feature

engendered some ill will, however, and ESpeed decided to abandon the feature in

January 2005 (Lucchetti (2005)).
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