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Abstract

Recently, there has been work on on-line portfolio selection algorithms which are
competitive with the best constant rebalanced portfolio determined in hindsight [2, 6, 3].
By their nature, these algorithms employ the assumption that high yield returns can
be achieved using a fized asset allocation strategy. However, stock markets are far from
being stationary and in many cases the return of a constant rebalanced portfolio is much
smaller than the return of an ad-hoc investment strategy that adapts to changes in the
market. In this paper we present an efficient portfolio selection algorithm that is able to
track a changing market. We also describe a simple extension of the algorithm for the
case of a general transaction cost, including a fixed percentage transaction cost which
was recently investigated [1]. We provide a simple analysis of the competitiveness
of the algorithm and check its performance on real stock data from the New York
Stock Exchange accumulated during a 22-year period. On this data, our algorithm
outperforms all the algorithms referenced above, with and without transaction costs.

1 Introduction

A constant rebalanced portfolio (CRP) is an asset allocation algorithm which keeps the
same distribution of wealth among a set of assets along a period of time. Recently, there
has been work on on-line portfolio selection algorithms which are competitive with the best
constant rebalanced portfolio determined in hindsight [2, 6, 3]. However, these algorithms
do not perform well when the market is changing as the following simple example shows.
Assume that two hypothetical highly volatile stocks are available. The value of the first stock
increases by a factor of % on each of the first n trading periods. Then it changes behavior and
its value falls by a factor of 4 on each of the consecutive n trading periods. The second stock
behaves in an opposite manner. Its value falls by a factor of 4 on each of the first n trading
periods and increases by a factor of % on each of the second n trading days. The relative price
change of the first stock can be described by the sequence %, %, ey %, i, i, ey i and of the
second by the sequence i, i, ey i%, %, ey % Investing all of the initial wealth in any of the
two stocks results in a fatal loss of almost all of the initial investment. Furthermore, it is easy
to verify that the best constant rebalanced portfolio would redistribute the wealth equally
after each trading day, resulting in an exponentially fast wealth decay. Thus, any competitive



rebalancing portfolio selection algorithm, such as Cover’s universal portfolio algorithm [2],
would result in a similar miserable performance. In contrast, an prescient investor who puts
all of hers money on the first stock for n days and then switches to the second stock would
enjoy an enormous profit even in the presence of hefty transaction costs. The algorithm
presented in this paper achieves almost the same wealth as the prescient investor without
any prior knowledge.

The algorithm proposed here copes with changing markets by considering the possibility
that the market changed its behavior after each trading day. The algorithm is provided with
a set of investment strategies. The first version we present assumes that the apriori duration
of using a given investment strategy is geometrically distributed with known parameters. If,
in addition, the set of investment strategies includes only pure strategies, i.e., holding a single
asset /stock, then a constant time per asset is required by the algorithm in order to compute
the wealth redistribution after each trading day. We also give a more general version that
does not employ a fixed value of parameters. This version achieves better competitiveness
bounds but it is more computationally expensive. Both versions can be easily modified to
deal with various models of transaction costs. Throughout the paper, we give examples using
data from the New York Stock Exchange accumulated during a 22-year period and compare
the results to the portfolio selection algorithms described in previous works [2, 6, 1]. On
this data, the suggested portfolio selection algorithm outperforms the algorithms referenced
above, with and without transaction costs.

2 Constant rebalanced portfolios

Consider a portfolio containing N stocks. On each trading day the performance of the stocks
can be described by a vector of price relatives, denoted by x = (1, x2,...,2n) where a; is
the next day’s opening price of the ¢th stock divided by its opening price on the current day.
Thus, the value of an investment in stock ¢ increases (or falls) to ; times its previous value
from one morning to the next. A portfolio is defined by a weight vector w = (wy, ws, ..., wy)
such that w; > 0 and Y, w; = 1. The ith entry of a portfolio w is the proportion of the
total portfolio value invested in the ¢th asset. Therefore, if the total wealth is S and the worth
of the sth asset S¢ then w; = S/S. Given a portfolio w and the price relatives x, investors
using this portfolio increase (or decrease) their wealth from one morning to the next by a
factor of w-x = SN | w;x;. Recent work in on-line portfolio selection algorithms has focused
on changing an ensemble of portfolio vectors based on past performance. That is, at the start
of each day t, the portfolio selection algorithm gets the previous price relatives of the stock
market x!,...,x'"!. From this information, the algorithm immediately selects its portfolio
w' for the day. At the beginning of the next day (day ¢ + 1), the price relatives for day ¢
are observed and the investor’s wealth increases by a factor of w'-x*. Over tlme a sequence
of price relatives x',x?%,...,x! is observed and a sequence of portfolios w', w? w' is

selected. From the begmnmg of day 1 through the begmnmg of day T+ 1, the Wealth will

Y

have increased by a factor of Sp({w'}, {x'}) = o [T-, w' - x' or, alternatively, the logarithm

of the increase is LSr({w'}, {x'}) & ¥L log (w' - x).
Cover [2] has defined a restricted class of investment strategies called constant rebalanced



portfolios. As noted before, a CRP is rebalanced each day so that a fixed fraction of the
wealth is held in each of the underlying investments. Therefore, a constant rebalanced port-
folio strategy employs the same investment vector w on each trading day and the resulting
wealth and normalized logarithmic wealth after 7' trading days are Sp(w) = [[_, w - x' ,
LSp(w) =L log (w - x'). Note that such a strategy might require vast amounts of trad-
ing, since at the beginning of each trading day the investment proportions are rebalanced
back to the vector w. Given a sequence of daily price relatives we can define, in retrospect,
the best rebalanced portfolio vector which would have achieved the maximum wealth S,
and hence also the maximum logarithmic wealth, L.S7. This portfolio vector is denoted by
w*. That is, w* def arg maxy S7(w) = arg maxy LS7(w), where the maximum is taken
over all possible portfolio vectors (i.e., vectors in BY with non-negative components that
sum to one). Recent work on portfolio selection has focused on on-line weight allocation
algorithms that achieve the same asymptotic growth in normalized logarithmic wealth. An
on-line algorithm that achieves such an asymptotic behavior is called universal portfolio.
Recently, Blum and Kalai [1] extended the notion of universal portfolio to the case of fixed
percentage transaction costs and gave an efficient randomized implementation of the algo-
rithm. Throughout the paper we use Cover’s (or Blum and Kalai’s extension in the presence
of transaction costs) universal portfolio algorithm as our straw-man for comparison.

3 Switching portfolios

In this section we provide two versions of our portfolio selection algorithm while ignoring
transaction costs. A simple modification of the algorithm that takes transaction costs into
account is discussed in the next section.

In contrast to previous work which has focused on finding a good portfolio vector, we
assume instead that we are provided with a set of possible investment strategies which we
term basic strategies. A basic strategy need not be complex. In fact, with the benefit of
hindsight, on each day one can invest all of one’s wealth in the single best-performing asset
for that day. We thus use pure investment strategies, i.e., strategies that invest all the wealth
in a single asset, as our basic investment strategies. Clearly, we do not have the luxury of
foreseeing future behavior of stock markets. However, as we show, it is possible to track
an investment regime that switches from one investment strategy to another as the market
changes its behavior. We do so by employing a mixture of all possible switching regimes.
The mixture technique enables us to hedge our bets against the individual switching regimes.
We associate a prior probability with each switching regime. The weights are distributed
among the different possible switching regimes such that more complicated regimes, that
frequently switches from one strategy to another, are apriori less favorable. We then let the
evidence, i.e., the actual returns, dictate which investment strategy to use.

In summary, our approach to portfolio selection is as follows. We first decide upon a
set of investment strategies. We then choose a prior distribution over the possible switching
sequences from one investment strategy to another. This prior distribution is recursive in
order to enable an efficient evaluation of the portfolio vector. Last, we combine the actual
return of each strategy on each day with the prior distribution to design a new portfolio
vector before each trading day. The wealth achieved by the algorithm is no worse than



the wealth of any specific switching regime times the prior probability of that regime. We
therefore can give a simple lower bound on the minimal return of our algorithm compared
to any available switching regime.

The first version assumes that the duration of using one strategy is geometrically dis-
tributed with a given parameter 7. Thus, if we started using the :th investment strategy at
time to, then the apriori probability of using this strategy through time #; (and then switch-
ing to a new strategy) is (1 — ’y)tl_tofy. An investment switching regime Q for T' trading days
is described in terms of two lists, (t1f5...%;) and (i122...00141), where the ¢; are indices of
the trading days after which we switched to a new investment strategy and ¢; are the indices
of the basic investment strategies used. Defining {; = 0 and assuming that a new strategy
is picked uniformly at random, the apriori probability of a switching regime Q from ¢ = 1

through ¢t =T is,

l

P(Q) = N (N - 1)_l 1:[ (1- ’y)t"—fz‘_rl,y (1- V)T_tl_l 1)
= NI (N . 1)—171 (1 . V)T_l_l : (2)

where N is the number of investment strategies which in the case of pure strategies is also
the number of different assets/stocks. The wealth achieved by a switching regime Q after
T trading days, S7(Q), is the product the returns of the investment strategies used by the
regime, where for pure strategies is simply,

+1 ty

si@) = I T (3)

j:l t:t]—l +1

Therefore, the sum of the wealth achieved by each switching regimes, weighted by its prior
probability, is simply Yo/ Po(Q')S7(Q’). Evaluating this sum directly is clearly infeasible
since the number of different switching regimes grows exponentially fast. However, since the
geometric distribution is memoryless, we can calculate the sum in constant time per asset for
each trading day as follows. Let S! be the worth of the ith asset after ¢ trading days. Then,
at trading day 141, we either stay with the current (pure) strategy with probability 1 — ~,
and therefore keep holding the ith stock, or switch to a new strategy (with probability v) by
redistributing the wealth among all other assets. Put another way, the value of the ¢th asset
is the sum of two terms: the first is the previous value of the asset times the probability that
we kept using the zth investment strategy on the current trading day; the second is value of
all other assets time the probability that we switched to the ¢th pure investment strategy.
Formally, the value of the ¢th asset after trading day t+41 is,

Sin = ((1—7)52 + ﬁZSi) et (4)

P
o : T K

_ _ I 2 o J t+1

_ ((1 5 N_1)Sf+zv_ ]Z:;St)xz . (5)

The above equations give a simple procedure to incorporate the prior probability over switch-
ing regimes with the actual return. That is, the above scheme can be directly described as
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Best  BCRP EG(n) Universal Switching  Switching
Stocks Stock (7 =0.05) Portfolio (y=1/4) (Adaptive )
Troquois & Kin Ark 8.92  73.70 70.85 39.97 72.58 143.71
Com. Met. & Kin Atk 52.02 144.00 117.15 80.54 118.68 206.74
Com. Met. & Mei. Corp. | 52.02 102.96 97.93 74.08 98.89 107.74
IBM & Coca-Cola 13.36  15.07 14.90 14.24 15.02 15.05

Table 1: Comparison of the wealths achieved by various on-line portfolio selection algorithms. For all the
portfolios considered, we give the wealth achieved by the best constituent stock in the portfolio, the wealth
achieved by the best constant-rebalanced portfolio (BCRP) computed in hindsight from the entire price
relatives sequence, the wealth achieved by the EG(n)-update rule (Helmbold et. al.), the wealth achieved
by Cover’s universal portfolio algorithm, and the switching portfolios algorithm with a fixed and adaptive
switching probability.

a portfolio weight update. Writing w! = S¢/ > 57 the weight wi+1 before trading day ¢ + 1
can be described in terms of w! as follows,

i 2 i 2l
Wiy = (1—7—ﬁ)wt+m- (6)

This portfolio weight update scheme resembles the fized-share weight update used by Herb-
ster and Warmuth [7] for tracking the best expert in a binary prediction setting. The analysis
presented in [7] does not simply carry over to our setting of unbounded returns. Since the
next version of the algorithm includes this version as a special case, we defer the analysis of
the first version to the end of the section.

We compared the performance of the switching portfolios algorithm to the returns achieved
by Cover’s universal portfolio algorithm [2], the multiplicative weight update algorithm [6]
(denoted by EG(7n)), the best constituent stock, and the best constant rebalanced portfolio.
We compared the results for all subsets of stocks considered by Cover [2] in his experiments.
The results are summarized in Table 1. In the absence of transactions costs, the average
time to hold to an investment strategy can be relatively short. For the NYSE stock data we
found that a reasonable time to hold a single stock ranges from a few days to a few weeks.
To have a fair comparison we set 1/y=4 in the all the experiments reported in Table 1, re-
gardless of the stocks constituting the portfolios. In all the experiments reported, the wealth
is calculated assuming an initial investment of one unit before the first trading day.

The problem with the first version described above is that the switching distribution is
specified through a parameter v which we need to set in advance. We now give a second
version of the switching portfolios algorithm that does not need such prior knowledge. Instead
of setting v to a predefined value, we let v vary in time and define (At) = Alt/-El’ t
be the switching portability after using the same investment strategy for At consecutive
trading days. The rationale behind this choice switching probability is beyond the scope
of this short paper and is based on a universal coding approach (see [8] and the references
therein for a motivating discussion and detailed analysis). We later show that this choice

of switching probability lets us derive a simple competitiveness bound for the switching
portfolios algorithm. Denote by S;to the wealth accumulated in the ¢th asset after trading
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day ¢ given that we started holding the asset on trading day t,. We now need to update
the wealth accumulated for each asset based on the start date of the corresponding (pure)
investment strategy. The wealth update scheme becomes,

t—t 1/2 .
o / Stl,tox?l
t—to+1

SZ+1¢+1 = (Z Z At tto) f—H = (Z Z to—l- 0 Sj ) :L’;H_l (7

j#1 to=1 J#1 to —1

St2+1 to — (1 - ’AV(t - tO)) Sf,to xf—H =

Note that this more general version has a price. The above wealth update can no longer be
computed in a constant time per stock. Since at trading day ¢ we perform O(t) operations, the
overall time complexity of the algorithm is O(t?) (as opposed to O(t) for the first version).
Furthermore, there is no equivalent update that directly manipulates a portfolio weight
vector. Nonetheless, since the actual switching rate ~ is induced by the actual returns, and
thus may vary in time, we achieve significantly higher yields as shown in Table 1. The first
version achieves results similar to the best CRP and second version significantly outperforms
the best CRP in three out of the four cases. The fourth subset includes IBM and Coca-Cola.
These stocks showed a ‘lock-step’ performance during the period 1963-1985. Thus, it is not
surprising that all the portfolio selection algorithms achieved similar results. We also would
like to note that we found that our the second version of the switching portfolios algorithm
consistently outperforms the Best CRP on different (and larger) subsets of the historical
NYSE stock market data, although the switching portfolios does not have the luxury of
hindsight.

We now discuss the competitiveness properties of the switching portfolios algorithm.
We compare the performance of the on-line algorithm to any switching regime that can
be determined in hindsight. To derive a lower bound on wealth achieved by the switching
portfolios algorithm we need the following lemma (proof omitted).

Lemma 1 log ([I2} “542) = Tizilog (S12) > —Llog(l) — log(2)

Based on the above lemma we now give our main competitiveness result.

Theorem 2 Let x',x% ..., xT(T > 2) be any sequence of price relatives for N assets. Let
S7(Q) be the wealth achieved by a switching regime Q that uses the N pure investment
strategies (as defined by Equ. (3)) and let 1(Q) be the number of times Q switches from
one strateqy to another. Then, the logarithmic wealth achieved by the switching portfolios
algorithm is at least

os(57(Q)) =~ 3110 1o (1155 ) = 1/2108(T) = (1(Q) + 1) og(a )

Proof sketch: The wealth achieved by the switching portfolios algorithm given by Equa-
tion (7) is an efficient way to calculate the sum 3 o/ Fo(Q')S7(Q’). Thus, the logarithmic
wealth achieved by the switching portfolios algorithm is

log(D_ Po(Q)57(Q)) = log(Fo(Q)S(Q)) = log(Fo(Q)) + log(5(Q)) -
Y



Now, from the definition of 4(At) we get that,

Py(Q) = %(N—l)" (H (_H_ J—'1/2) - i/i_l) =2

=1 7=1 J 7=1 J

Let [ be a shorthand for [(Q). Using Lemma 1 and simple algebraic manipulations, we get
that,

log(Po(Q)) = —log(N)—llog(N—1)—3/2> log(t;—t;_1)—21log(2)—1/2log(T'—t;)—log(2) .

=1

Now, using the log-sum inequality (see [4]) we can bound the above expression as follows,

log(Po(Q)) = —log(N) —log(N — 1) — 3/21log(T/1) — (20 + 1) log(2) — 1/2log(T)

>
> —(l+1)log(4N) —3/2llog(T/1) — 1/2log(T) . O

Deriving a competitiveness bound for the first version of the algorithm is a much easier
task since 7 is fixed. In short, we get that logarithmic wealth achieved by the switching
portfolios algorithm with a fixed 4 compared to any switching regime is smaller by at most,
(1 + 1) log(N) + Llog(1/7) + (T — 1) log(L/(1 — 7).

The bound of Thm. 2 has a nice intuitive interpretation. Although a switching regimes
that frequently switches from one investment strategy to another has the potential of achiev-
ing high yields the gap between the wealth achieved by the switching portfolios algorithm
and such a frequently switching regime is large. Furthermore, since the bound holds for any
switching regime we in fact get that the wealth achieved by the algorithm is at least,

max {log(ST(Q)) - gl(Q) log (%) —1/2log(T) — 1(Q) log(4N)}

Therefore, the switching portfolios algorithm encompasses a natural tradeoff between the
yield of a switching regime and its complexity (in terms of the number of time it switches).

4 Transaction costs

Coping with a transaction costs model when using the switching portfolios algorithm with
pure investment strategies is a simple task. Since on each trading day we take a portion
of the wealth from each asset and redistribute it among the rest of the assets, we simply
need to deduct the cost of selling asset ¢, and then further deduct the cost of buying asset
J. Clearly, this is not the least expensive scheme to redistribute the wealth. We might end
up selling and buying the same asset and thus pay more commission than would have been
needed had we pre-calculated the amount we need to sell/buy per each asset. However, it
is enough to use this scheme in order to achieve the same competitiveness bounds. For the
case of a fixed percentage ¢ of the amount we trade (either buy or sell), the first equation



of the wealth update Equation (7) remains the same (no trading is taking place), while the
second equation becomes,

S§+1,t+1 = (1—¢) (ZZ to—l-l) Sj )x?l : (8)

Jj#t to=1

Although simplistic, this approach results in the same competitiveness bounds when us-
ing only pure strategies. When we switch from one strategy to another we have to sell
one asset entirely and buy a new one. Therefore, the wealth achieved by a switching
regime Q in the presence of fixed percentage transaction costs is now exactly, Sr(Q) =
Hl"'l (1- ) tj _,+1%i.. Thus, the bound on gap between the wealth achieved by the
sw1tch1ng portfohos algorlthm and any specific switching regime does not change.

It is also simple to derive a wealth update scheme for other transaction costs models.
For instance, Blum and Kalai [1] suggested a transaction costs model where first the entire
portfolio vector is updated in parallel for all the assets, then the cost is subtracted from the
total wealth (some from each stock) such that the wealth proportions would not change.
Formally, the transaction cost of changing the wealth distribution from {S;} to {5/} in that
model is, ¢ 3", |9; — S!|. The analysis for this transaction cost model follows similar lines. For
a switching regime Q. we either keep the same asset or sell it entirely and buy a new asset.
Thus, the former case incur a zero transaction cost while the latter decreases the wealth by
a factor of 1 — 2¢. Therefore, the wealth in case of a switch, as described by the second part
of Equation (7), now becomes,

S§+17t+1 = 1—2C (ZZ t—t —|-1) Sj )xf‘H X (9)

Jj#t to=1

Again, the bound on wealth achieved by the switching portfolios algorithm remains the same.
Blum and Kalai used this transaction costs model and described a modification to Cover’s
universal portfolio algorithm that is still competitive. In Table 2 we compare the wealths
achieved by Blum and Kalai’s algorithm and the switching portfolios algorithm for the same
subsets of stocks appearing in Table 1. The results are given for a modest 0.1% transaction
cost and a hefty 2% transaction cost. In all cases, the switching portfolios algorithm achieves
much better results than the modified universal portfolio algorithm. Furthermore, in several
cases the switching portfolios algorithm outperforms the best CRP. We also checked the
performance on larger sets of stocks that were not reported in previous papers. In all
cases checked, we found that the wealths achieved by the universal portfolio algorithm were
significantly smaller than the wealths achieved by the switching portfolios algorithm, and,
often smaller than the wealth achieved by the best constituent stocks. Moreover, we found
that the universal portfolio scales rather poorly with the size of the portfolio (i.e., the number
of stocks) while the switching portfolios is almost always able to take advantage of additional
stocks.

To conclude this section, we give an illustrative example of a portfolio with three stocks:
Dow Chemicals, Espey Manufacturing, and Kin Ark. These stocks are rather volatile and, as
shown at the top right hand side of Figure 1, they exhibit different behavior during relatively
long periods. The left and the middle graphs in the figure show the daily wealths achieved



0.1% Transaction Costs 2% Transaction Costs
Stocks BCRP Universal Switching | BCRP  Universal Switching
Troquois & Kin Ark 68.02 33.92 115.3 22.05 9.22 23.32
Com. Met. & Kin Ark 136.6 65.09 169.0 56.20 21.53 42.88
Com. Met. & Mei. Corp. | 99.07 64.33 97.41 52.76 29.81 67.59
IBM & Coca-Cola 14.83 13.85 14.79 13.02 10.24 13.81

Table 2: Comparison of the wealths achieved by the universal portfolio algorithm and the switching
portfolios algorithm with 0.1% and 2% transaction costs. For comparison the wealth achieved by the best
CRP 1s also provided.

by the switching portfolios algorithm and the universal portfolio for transaction costs of
0.5% and 3%. For comparison, we also give the daily value of the best constituent stock.
The bottom right hand side plot describes, using a color coded scheme, the largest asset in
the portfolio (for a 3% transaction cost). That is, if V5 # ¢ : S! > S} then we draw a bar
using the ¢th color at the location corresponding to the tth trading day. Clearly, there are
long periods where a significant portion of the wealth is invested in a single asset, which
is the asset that locally gives the highest returns. This behavior confirms empirically our
basic assumption that high yield returns can be achieved using pure investment strategies
combined with a switching regime.

We also implemented and evaluated more complex investment strategies in addition to
pure strategies. For instance, we used Blum and Kalai’s universal portfolio algorithm itself
as a basic investment strategy and ‘fed’ it into the switching portfolios algorithm. In all the
experiments we performed, we found a modest improvement (due to the lack of space the
actual results are omitted) over using pure strategies only as our basic investment strategies.
These findings are not surprising since, as argued earlier, with the benefit of hindsight, we
can use pure investment and still achieve enormous returns. Roughly speaking, the switching
portfolios algorithm tries to imitate an prescient observer and thus the improvement using
more complex, yet oblivious, investment strategies is relatively small.

5 Conclusions

A simple and efficient portfolio selection algorithm was presented in this paper. The algo-
rithm is competitive with any switching regime determined in hindsight. Similar approaches
were investigated for different settings [7, 5]. One of the contributions of this paper is
the distillation of key elements of previously known methods, and the synthesis with other
learning-theory and information-theory results leading to an algorithm that outperforms
previously published competitive portfolio selection algorithms. Furthermore, our algorithm
achieves a slightly better competitiveness bound than the bounds reported in [7, 5] and in
addition can also use non-fized investment strategies as discussed above. The price that we
pay for the improved bounds and flexibility is a more complex and time consuming algo-
rithm. An important question is whether our more general algorithm can be implemented
using a constant time per asset for each trading day.
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Figure 1: Top figures: the wealths achieved by the switching portfolios algorithm (with pure strategies),
the modified universal portfolio algorithm and the best constituent stock in the presence of 0.5% and 3%
transaction costs. Bottom figure: the performance of the individual stocks and a color coded plot of the
largest invested stock held by the switching portfolios algorithm on each trading day.

There is still some room for improvement within the current framework. First, we use
the least informative scheme, namely the uniform distribution, to redistribute the wealth
upon a switch. More informative redistribution techniques that use past performance might
yield higher returns as well as better competitiveness bounds. Second, our switching model
employs a tacit assumption that the prior probability of switching is stationary. However,
real stock markets alternate between periods of rapid price change and relatively calm peri-
ods. Such a behavior is not captured by the current prior probability model for switching.
It might be possible to model time dependent prior distributions with an even more complex
algorithm. Lastly, although we observed only a modest improvement in performance when
we used complex investment strategies, this might simply reflect a limitation of the universal
portfolio algorithm. Investigating alternative basic investment strategies that may result in
higher returns is one of the future research goals.
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