
Switching PortfoliosYoram SingerAT&T Labs, Room A277180 Park Avenue, Florham Park, NJ 07932singer@research.att.comAbstractRecently, there has been work on on-line portfolio selection algorithms which arecompetitive with the best constant rebalanced portfolio determined in hindsight [2, 6, 3].By their nature, these algorithms employ the assumption that high yield returns canbe achieved using a �xed asset allocation strategy. However, stock markets are far frombeing stationary and in many cases the return of a constant rebalanced portfolio is muchsmaller than the return of an ad-hoc investment strategy that adapts to changes in themarket. In this paper we present an e�cient portfolio selection algorithm that is able totrack a changing market. We also describe a simple extension of the algorithm for thecase of a general transaction cost, including a �xed percentage transaction cost whichwas recently investigated [1]. We provide a simple analysis of the competitivenessof the algorithm and check its performance on real stock data from the New YorkStock Exchange accumulated during a 22-year period. On this data, our algorithmoutperforms all the algorithms referenced above, with and without transaction costs.1 IntroductionA constant rebalanced portfolio (CRP) is an asset allocation algorithm which keeps thesame distribution of wealth among a set of assets along a period of time. Recently, therehas been work on on-line portfolio selection algorithms which are competitive with the bestconstant rebalanced portfolio determined in hindsight [2, 6, 3]. However, these algorithmsdo not perform well when the market is changing as the following simple example shows.Assume that two hypothetical highly volatile stocks are available. The value of the �rst stockincreases by a factor of 32 on each of the �rst n trading periods. Then it changes behavior andits value falls by a factor of 4 on each of the consecutive n trading periods. The second stockbehaves in an opposite manner. Its value falls by a factor of 4 on each of the �rst n tradingperiods and increases by a factor of 32 on each of the second n trading days. The relative pricechange of the �rst stock can be described by the sequence 32 ; 32; : : : ; 32 ; 14 ; 14 ; : : : ; 14 and of thesecond by the sequence 14 ; 14; : : : ; 14 32 ; 32; : : : ; 32. Investing all of the initial wealth in any of thetwo stocks results in a fatal loss of almost all of the initial investment. Furthermore, it is easyto verify that the best constant rebalanced portfolio would redistribute the wealth equallyafter each trading day, resulting in an exponentially fast wealth decay. Thus, any competitive1



rebalancing portfolio selection algorithm, such as Cover's universal portfolio algorithm [2],would result in a similar miserable performance. In contrast, an prescient investor who putsall of hers money on the �rst stock for n days and then switches to the second stock wouldenjoy an enormous pro�t even in the presence of hefty transaction costs. The algorithmpresented in this paper achieves almost the same wealth as the prescient investor withoutany prior knowledge.The algorithm proposed here copes with changing markets by considering the possibilitythat the market changed its behavior after each trading day. The algorithm is provided witha set of investment strategies. The �rst version we present assumes that the apriori durationof using a given investment strategy is geometrically distributed with known parameters. If,in addition, the set of investment strategies includes only pure strategies, i.e., holding a singleasset/stock, then a constant time per asset is required by the algorithm in order to computethe wealth redistribution after each trading day. We also give a more general version thatdoes not employ a �xed value of parameters. This version achieves better competitivenessbounds but it is more computationally expensive. Both versions can be easily modi�ed todeal with various models of transaction costs. Throughout the paper, we give examples usingdata from the New York Stock Exchange accumulated during a 22-year period and comparethe results to the portfolio selection algorithms described in previous works [2, 6, 1]. Onthis data, the suggested portfolio selection algorithm outperforms the algorithms referencedabove, with and without transaction costs.2 Constant rebalanced portfoliosConsider a portfolio containing N stocks. On each trading day the performance of the stockscan be described by a vector of price relatives, denoted by x = (x1; x2; : : : ; xN) where xi isthe next day's opening price of the ith stock divided by its opening price on the current day.Thus, the value of an investment in stock i increases (or falls) to xi times its previous valuefrom one morning to the next. A portfolio is de�ned by a weight vectorw = (w1; w2; : : : ; wN)such that wi � 0 and PNi=1wi = 1. The ith entry of a portfolio w is the proportion of thetotal portfolio value invested in the ith asset. Therefore, if the total wealth is S and the worthof the ith asset Si then wi = Si=S. Given a portfolio w and the price relatives x, investorsusing this portfolio increase (or decrease) their wealth from one morning to the next by afactor of w �x = PNi=1wixi. Recent work in on-line portfolio selection algorithms has focusedon changing an ensemble of portfolio vectors based on past performance. That is, at the startof each day t, the portfolio selection algorithm gets the previous price relatives of the stockmarket x1; : : : ;xt�1. From this information, the algorithm immediately selects its portfoliowt for the day. At the beginning of the next day (day t + 1), the price relatives for day tare observed and the investor's wealth increases by a factor of wt �xt. Over time, a sequenceof price relatives x1;x2; : : : ;xT is observed and a sequence of portfolios w1;w2; : : : ;wT isselected. From the beginning of day 1 through the beginning of day T + 1, the wealth willhave increased by a factor of ST (fwtg; fxtg) def= QTt=1wt � xt or, alternatively, the logarithmof the increase is LST (fwtg; fxtg) def= PTt=1 log (wt � xt).Cover [2] has de�ned a restricted class of investment strategies called constant rebalanced2



portfolios. As noted before, a CRP is rebalanced each day so that a �xed fraction of thewealth is held in each of the underlying investments. Therefore, a constant rebalanced port-folio strategy employs the same investment vector w on each trading day and the resultingwealth and normalized logarithmic wealth after T trading days are ST (w) = QTt=1w � xt ,LST (w) = PTt=1 log (w � xt). Note that such a strategy might require vast amounts of trad-ing, since at the beginning of each trading day the investment proportions are rebalancedback to the vector w. Given a sequence of daily price relatives we can de�ne, in retrospect,the best rebalanced portfolio vector which would have achieved the maximum wealth ST ,and hence also the maximum logarithmic wealth, LST . This portfolio vector is denoted byw?. That is, w? def= argmaxw ST (w) = arg maxw LST (w), where the maximum is takenover all possible portfolio vectors (i.e., vectors in RN with non-negative components thatsum to one). Recent work on portfolio selection has focused on on-line weight allocationalgorithms that achieve the same asymptotic growth in normalized logarithmic wealth. Anon-line algorithm that achieves such an asymptotic behavior is called universal portfolio.Recently, Blum and Kalai [1] extended the notion of universal portfolio to the case of �xedpercentage transaction costs and gave an e�cient randomized implementation of the algo-rithm. Throughout the paper we use Cover's (or Blum and Kalai's extension in the presenceof transaction costs) universal portfolio algorithm as our straw-man for comparison.3 Switching portfoliosIn this section we provide two versions of our portfolio selection algorithm while ignoringtransaction costs. A simple modi�cation of the algorithm that takes transaction costs intoaccount is discussed in the next section.In contrast to previous work which has focused on �nding a good portfolio vector, weassume instead that we are provided with a set of possible investment strategies which weterm basic strategies. A basic strategy need not be complex. In fact, with the bene�t ofhindsight, on each day one can invest all of one's wealth in the single best-performing assetfor that day. We thus use pure investment strategies, i.e., strategies that invest all the wealthin a single asset, as our basic investment strategies. Clearly, we do not have the luxury offoreseeing future behavior of stock markets. However, as we show, it is possible to trackan investment regime that switches from one investment strategy to another as the marketchanges its behavior. We do so by employing a mixture of all possible switching regimes.The mixture technique enables us to hedge our bets against the individual switching regimes.We associate a prior probability with each switching regime. The weights are distributedamong the di�erent possible switching regimes such that more complicated regimes, thatfrequently switches from one strategy to another, are apriori less favorable. We then let theevidence, i.e., the actual returns, dictate which investment strategy to use.In summary, our approach to portfolio selection is as follows. We �rst decide upon aset of investment strategies. We then choose a prior distribution over the possible switchingsequences from one investment strategy to another. This prior distribution is recursive inorder to enable an e�cient evaluation of the portfolio vector. Last, we combine the actualreturn of each strategy on each day with the prior distribution to design a new portfoliovector before each trading day. The wealth achieved by the algorithm is no worse than3



the wealth of any speci�c switching regime times the prior probability of that regime. Wetherefore can give a simple lower bound on the minimal return of our algorithm comparedto any available switching regime.The �rst version assumes that the duration of using one strategy is geometrically dis-tributed with a given parameter 
. Thus, if we started using the ith investment strategy attime t0, then the apriori probability of using this strategy through time t1 (and then switch-ing to a new strategy) is (1 � 
)t1�t0
. An investment switching regimeQ for T trading daysis described in terms of two lists, (t1t2 : : : tl) and (i1i2 : : : ilil+1), where the tj are indices ofthe trading days after which we switched to a new investment strategy and ij are the indicesof the basic investment strategies used. De�ning t0 = 0 and assuming that a new strategyis picked uniformly at random, the apriori probability of a switching regime Q from t = 1through t = T is,P0(Q) = N�1 (N � 1)�l " lYi=1 (1� 
)ti�ti�1�1
# (1� 
)T�tl�1 (1)= N�1 (N � 1)�l 
l (1� 
)T�l�1 ; (2)where N is the number of investment strategies which in the case of pure strategies is alsothe number of di�erent assets/stocks. The wealth achieved by a switching regime Q afterT trading days, ST (Q), is the product the returns of the investment strategies used by theregime, where for pure strategies is simply,ST (Q) = l+1Yj=1 tjYt=tj�1+1xtij : (3)Therefore, the sum of the wealth achieved by each switching regimes, weighted by its priorprobability, is simply PQ0 P0(Q0)ST (Q0). Evaluating this sum directly is clearly infeasiblesince the number of di�erent switching regimes grows exponentially fast. However, since thegeometric distribution is memoryless, we can calculate the sum in constant time per asset foreach trading day as follows. Let Sit be the worth of the ith asset after t trading days. Then,at trading day t+1, we either stay with the current (pure) strategy with probability 1 � 
,and therefore keep holding the ith stock, or switch to a new strategy (with probability 
) byredistributing the wealth among all other assets. Put another way, the value of the ith assetis the sum of two terms: the �rst is the previous value of the asset times the probability thatwe kept using the ith investment strategy on the current trading day; the second is value ofall other assets time the probability that we switched to the ith pure investment strategy.Formally, the value of the ith asset after trading day t+1 is,Sit+1 = 0@(1� 
)Sit + 
N � 1Xj 6=i Sjt1A xt+1i (4)= 0@�1� 
 � 
N � 1�Sit + 
N � 1 NXj=1Sjt1A xt+1i : (5)The above equations give a simple procedure to incorporate the prior probability over switch-ing regimes with the actual return. That is, the above scheme can be directly described as4



Best BCRP EG(�) Universal Switching SwitchingStocks Stock (� = 0:05) Portfolio (
 = 1=4) (Adaptive 
)Iroquois & Kin Ark 8.92 73.70 70.85 39.97 72.58 143.71Com. Met. & Kin Ark 52.02 144.00 117.15 80.54 118.68 206.74Com. Met. & Mei. Corp. 52.02 102.96 97.93 74.08 98.89 107.74IBM & Coca-Cola 13.36 15.07 14.90 14.24 15.02 15.05Table 1: Comparison of the wealths achieved by various on-line portfolio selection algorithms. For all theportfolios considered, we give the wealth achieved by the best constituent stock in the portfolio, the wealthachieved by the best constant-rebalanced portfolio (BCRP) computed in hindsight from the entire pricerelatives sequence, the wealth achieved by the EG(�)-update rule (Helmbold et. al.), the wealth achievedby Cover's universal portfolio algorithm, and the switching portfolios algorithm with a �xed and adaptiveswitching probability.a portfolio weight update. Writing wit = Sit=Pj Sjt , the weight wit+1 before trading day t+ 1can be described in terms of wit as follows,wit+1 = �1 � 
 � 
N � 1�wit + 
N � 1 : (6)This portfolio weight update scheme resembles the �xed-share weight update used by Herb-ster and Warmuth [7] for tracking the best expert in a binary prediction setting. The analysispresented in [7] does not simply carry over to our setting of unbounded returns. Since thenext version of the algorithm includes this version as a special case, we defer the analysis ofthe �rst version to the end of the section.We compared the performance of the switching portfolios algorithm to the returns achievedby Cover's universal portfolio algorithm [2], the multiplicative weight update algorithm [6](denoted by EG(�)), the best constituent stock, and the best constant rebalanced portfolio.We compared the results for all subsets of stocks considered by Cover [2] in his experiments.The results are summarized in Table 1. In the absence of transactions costs, the averagetime to hold to an investment strategy can be relatively short. For the NYSE stock data wefound that a reasonable time to hold a single stock ranges from a few days to a few weeks.To have a fair comparison we set 1=
=4 in the all the experiments reported in Table 1, re-gardless of the stocks constituting the portfolios. In all the experiments reported, the wealthis calculated assuming an initial investment of one unit before the �rst trading day.The problem with the �rst version described above is that the switching distribution isspeci�ed through a parameter 
 which we need to set in advance. We now give a secondversion of the switching portfolios algorithm that does not need such prior knowledge. Insteadof setting 
 to a prede�ned value, we let 
 vary in time and de�ne 
̂(�t) = 1=2�t+1 , tobe the switching portability after using the same investment strategy for �t consecutivetrading days. The rationale behind this choice switching probability is beyond the scopeof this short paper and is based on a universal coding approach (see [8] and the referencestherein for a motivating discussion and detailed analysis). We later show that this choiceof switching probability lets us derive a simple competitiveness bound for the switchingportfolios algorithm. Denote by Sit;t0 the wealth accumulated in the ith asset after trading5



day t given that we started holding the asset on trading day t0. We now need to updatethe wealth accumulated for each asset based on the start date of the corresponding (pure)investment strategy. The wealth update scheme becomes,Sit+1;t0 = (1 � 
̂(t� t0))Sit;t0 xt+1i = t� t0 + 1=2t� t0 + 1 Sit;t0 xt+1iSit+1;t+1 = 0@Xj 6=i tXt0=1 
̂(t� t0)Sjt;t01A xt+1i = 0@Xj 6=i tXt0=1 12(t� t0 + 1) Sjt;t01A xt+1i : (7)Note that this more general version has a price. The above wealth update can no longer becomputed in a constant time per stock. Since at trading day t we performO(t) operations, theoverall time complexity of the algorithm is O(t2) (as opposed to O(t) for the �rst version).Furthermore, there is no equivalent update that directly manipulates a portfolio weightvector. Nonetheless, since the actual switching rate 
 is induced by the actual returns, andthus may vary in time, we achieve signi�cantly higher yields as shown in Table 1. The �rstversion achieves results similar to the best CRP and second version signi�cantly outperformsthe best CRP in three out of the four cases. The fourth subset includes IBM and Coca-Cola.These stocks showed a `lock-step' performance during the period 1963-1985. Thus, it is notsurprising that all the portfolio selection algorithms achieved similar results. We also wouldlike to note that we found that our the second version of the switching portfolios algorithmconsistently outperforms the Best CRP on di�erent (and larger) subsets of the historicalNYSE stock market data, although the switching portfolios does not have the luxury ofhindsight.We now discuss the competitiveness properties of the switching portfolios algorithm.We compare the performance of the on-line algorithm to any switching regime that canbe determined in hindsight. To derive a lower bound on wealth achieved by the switchingportfolios algorithm we need the following lemma (proof omitted).Lemma 1 log �Ql�1i=0 i+1=2i+1 � = Pl�1i=1 log � i�1=2i � � �12 log(l)� log(2) :Based on the above lemma we now give our main competitiveness result.Theorem 2 Let x1;x2; : : : ;xT (T � 2) be any sequence of price relatives for N assets. LetST (Q) be the wealth achieved by a switching regime Q that uses the N pure investmentstrategies (as de�ned by Equ. (3)) and let l(Q) be the number of times Q switches fromone strategy to another. Then, the logarithmic wealth achieved by the switching portfoliosalgorithm is at leastlog(ST (Q))� 32 l(Q) log Tl(Q)!� 1=2 log(T )� (l(Q) + 1) log(4N) :Proof sketch: The wealth achieved by the switching portfolios algorithm given by Equa-tion (7) is an e�cient way to calculate the sum PQ0 P0(Q0)ST (Q0). Thus, the logarithmicwealth achieved by the switching portfolios algorithm islog(XQ0 P0(Q0)ST (Q0)) � log(P0(Q)S(Q)) = log(P0(Q)) + log(S(Q)) :6



Now, from the de�nition of 
̂(�t) we get that,P0(Q) = 1N (N � 1)�l 0@ lYi=10@ti�ti�1�1Yj=1 j � 1=2j 1A 1=2ti � ti�11A T�tl�1Yj=1 j � 1=2j :Let l be a shorthand for l(Q). Using Lemma 1 and simple algebraic manipulations, we getthat,log(P0(Q)) = � log(N)�l log(N�1)�3=2 lXi=1 log(ti�ti�1)�2l log(2)�1=2 log(T�tl)�log(2) :Now, using the log-sum inequality (see [4]) we can bound the above expression as follows,log(P0(Q)) � � log(N) � l log(N � 1) � 3=2l log(T=l)� (2l + 1) log(2) � 1=2 log(T )� �(l + 1) log(4N) � 3=2l log(T=l)� 1=2 log(T ) : 2Deriving a competitiveness bound for the �rst version of the algorithm is a much easiertask since 
 is �xed. In short, we get that logarithmic wealth achieved by the switchingportfolios algorithm with a �xed 
 compared to any switching regime is smaller by at most,(l + 1) log(N) + l log(1=
) + (T � l) log(1=(1 � 
)).The bound of Thm. 2 has a nice intuitive interpretation. Although a switching regimesthat frequently switches from one investment strategy to another has the potential of achiev-ing high yields the gap between the wealth achieved by the switching portfolios algorithmand such a frequently switching regime is large. Furthermore, since the bound holds for anyswitching regime we in fact get that the wealth achieved by the algorithm is at least,maxQ (log(ST (Q))� 32 l(Q) log Tl(Q)!� 1=2 log(T )� l(Q) log(4N)) :Therefore, the switching portfolios algorithm encompasses a natural tradeo� between theyield of a switching regime and its complexity (in terms of the number of time it switches).4 Transaction costsCoping with a transaction costs model when using the switching portfolios algorithm withpure investment strategies is a simple task. Since on each trading day we take a portionof the wealth from each asset and redistribute it among the rest of the assets, we simplyneed to deduct the cost of selling asset i, and then further deduct the cost of buying assetj. Clearly, this is not the least expensive scheme to redistribute the wealth. We might endup selling and buying the same asset and thus pay more commission than would have beenneeded had we pre-calculated the amount we need to sell/buy per each asset. However, itis enough to use this scheme in order to achieve the same competitiveness bounds. For thecase of a �xed percentage c of the amount we trade (either buy or sell), the �rst equation7



of the wealth update Equation (7) remains the same (no trading is taking place), while thesecond equation becomes,Sit+1;t+1 = (1 � c)20@Xj 6=i tXt0=1 12(t� t0 + 1) Sjt;t01A xt+1i : (8)Although simplistic, this approach results in the same competitiveness bounds when us-ing only pure strategies. When we switch from one strategy to another we have to sellone asset entirely and buy a new one. Therefore, the wealth achieved by a switchingregime Q in the presence of �xed percentage transaction costs is now exactly, ST (Q) =Ql+1j=1 (1� c)2Qtjt=tj�1+1 xtij . Thus, the bound on gap between the wealth achieved by theswitching portfolios algorithm and any speci�c switching regime does not change.It is also simple to derive a wealth update scheme for other transaction costs models.For instance, Blum and Kalai [1] suggested a transaction costs model where �rst the entireportfolio vector is updated in parallel for all the assets, then the cost is subtracted from thetotal wealth (some from each stock) such that the wealth proportions would not change.Formally, the transaction cost of changing the wealth distribution from fSig to fS 0ig in thatmodel is, cPi jSi�S 0ij. The analysis for this transaction cost model follows similar lines. Fora switching regime Q, we either keep the same asset or sell it entirely and buy a new asset.Thus, the former case incur a zero transaction cost while the latter decreases the wealth bya factor of 1� 2c. Therefore, the wealth in case of a switch, as described by the second partof Equation (7), now becomes,Sit+1;t+1 = (1� 2c)0@Xj 6=i tXt0=1 12(t� t0 + 1) Sjt;t01A xt+1i : (9)Again, the bound on wealth achieved by the switching portfolios algorithm remains the same.Blum and Kalai used this transaction costs model and described a modi�cation to Cover'suniversal portfolio algorithm that is still competitive. In Table 2 we compare the wealthsachieved by Blum and Kalai's algorithm and the switching portfolios algorithm for the samesubsets of stocks appearing in Table 1. The results are given for a modest 0:1% transactioncost and a hefty 2% transaction cost. In all cases, the switching portfolios algorithm achievesmuch better results than the modi�ed universal portfolio algorithm. Furthermore, in severalcases the switching portfolios algorithm outperforms the best CRP. We also checked theperformance on larger sets of stocks that were not reported in previous papers. In allcases checked, we found that the wealths achieved by the universal portfolio algorithm weresigni�cantly smaller than the wealths achieved by the switching portfolios algorithm, and,often smaller than the wealth achieved by the best constituent stocks. Moreover, we foundthat the universal portfolio scales rather poorly with the size of the portfolio (i.e., the numberof stocks) while the switching portfolios is almost always able to take advantage of additionalstocks.To conclude this section, we give an illustrative example of a portfolio with three stocks:Dow Chemicals, Espey Manufacturing, and Kin Ark. These stocks are rather volatile and, asshown at the top right hand side of Figure 1, they exhibit di�erent behavior during relativelylong periods. The left and the middle graphs in the �gure show the daily wealths achieved8



0.1% Transaction Costs 2% Transaction CostsStocks BCRP Universal Switching BCRP Universal SwitchingIroquois & Kin Ark 68.02 33.92 115.3 22.05 9.22 23.32Com. Met. & Kin Ark 136.6 65.09 169.0 56.20 21.53 42.88Com. Met. & Mei. Corp. 99.07 64.33 97.41 52.76 29.81 67.59IBM & Coca-Cola 14.83 13.85 14.79 13.02 10.24 13.81Table 2: Comparison of the wealths achieved by the universal portfolio algorithm and the switchingportfolios algorithm with 0:1% and 2% transaction costs. For comparison the wealth achieved by the bestCRP is also provided.by the switching portfolios algorithm and the universal portfolio for transaction costs of0:5% and 3%. For comparison, we also give the daily value of the best constituent stock.The bottom right hand side plot describes, using a color coded scheme, the largest asset inthe portfolio (for a 3% transaction cost). That is, if 8j 6= i : Sit > Sjt then we draw a barusing the ith color at the location corresponding to the tth trading day. Clearly, there arelong periods where a signi�cant portion of the wealth is invested in a single asset, whichis the asset that locally gives the highest returns. This behavior con�rms empirically ourbasic assumption that high yield returns can be achieved using pure investment strategiescombined with a switching regime.We also implemented and evaluated more complex investment strategies in addition topure strategies. For instance, we used Blum and Kalai's universal portfolio algorithm itselfas a basic investment strategy and `fed' it into the switching portfolios algorithm. In all theexperiments we performed, we found a modest improvement (due to the lack of space theactual results are omitted) over using pure strategies only as our basic investment strategies.These �ndings are not surprising since, as argued earlier, with the bene�t of hindsight, wecan use pure investment and still achieve enormous returns. Roughly speaking, the switchingportfolios algorithm tries to imitate an prescient observer and thus the improvement usingmore complex, yet oblivious, investment strategies is relatively small.5 ConclusionsA simple and e�cient portfolio selection algorithm was presented in this paper. The algo-rithm is competitive with any switching regime determined in hindsight. Similar approacheswere investigated for di�erent settings [7, 5]. One of the contributions of this paper isthe distillation of key elements of previously known methods, and the synthesis with otherlearning-theory and information-theory results leading to an algorithm that outperformspreviously published competitive portfolio selection algorithms. Furthermore, our algorithmachieves a slightly better competitiveness bound than the bounds reported in [7, 5] and inaddition can also use non-�xed investment strategies as discussed above. The price that wepay for the improved bounds and 
exibility is a more complex and time consuming algo-rithm. An important question is whether our more general algorithm can be implementedusing a constant time per asset for each trading day.9
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Trading DaysFigure 1: Top �gures: the wealths achieved by the switching portfolios algorithm (with pure strategies),the modi�ed universal portfolio algorithm and the best constituent stock in the presence of 0.5% and 3%transaction costs. Bottom �gure: the performance of the individual stocks and a color coded plot of thelargest invested stock held by the switching portfolios algorithm on each trading day.There is still some room for improvement within the current framework. First, we usethe least informative scheme, namely the uniform distribution, to redistribute the wealthupon a switch. More informative redistribution techniques that use past performance mightyield higher returns as well as better competitiveness bounds. Second, our switching modelemploys a tacit assumption that the prior probability of switching is stationary. However,real stock markets alternate between periods of rapid price change and relatively calm peri-ods. Such a behavior is not captured by the current prior probability model for switching.It might be possible to model time dependent prior distributions with an even more complexalgorithm. Lastly, although we observed only a modest improvement in performance whenwe used complex investment strategies, this might simply re
ect a limitation of the universalportfolio algorithm. Investigating alternative basic investment strategies that may result inhigher returns is one of the future research goals.AcknowledgmentsThanks to Y. Bengio, M. Herbster, R. Schapire, and M. Warmuth for helpful discussions.10
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