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ABSTRACT. How does a market digest order imbalance? We show that when market

participants learn about the level of adverse selection (the risk of trading against better-

informed counterparties) from order flow, a large order imbalance can be destabilizing,

causing sharp price movements and evaporation of liquidity, as it signals high toxicity.

While such effect is consistent with the practitioner view that order flow is informative

about toxicity, it contrasts with standard microstructure models in which the level of

adverse selection is assumed to be known and thus order imbalance improves liquidity

by revealing private information. Our model helps to understand when markets are most

susceptible to imbalance-induced instability and the dynamic process of how markets

digest order imbalance.
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1. INTRODUCTION

Toxic order flow is a source of financial market instability meaning it can cause evaporation

of liquidity, elevated volatility, and sharp price movements. Order flow is regarded as toxic

when it originates from a better-informed counterparty, causing adverse selection of market

participants’ orders and losses for liquidity providers. Market practitioners, in particular market

makers, have long used order imbalance as an indication of order flow toxicity, adjusting their

trading strategies accordingly. Liquidity providers (e.g., algorithmic market makers) often with-

draw their quotes in the face of large order imbalances, making markets less liquid during and

following large order imbalances (e.g., Chordia, Roll and Subrahmanyam (2002), Anand and

Venkataraman (2016)). In the extreme, order imbalances can trigger ‘flash crashes’— episodes

of extreme price movements accompanied by evaporation of liquidity and elevated volatility

(e.g., Easley, López de Prado and O’Hara (2012), Kirilenko et al. (2017)). Given the fun-

damental importance of market stability in promoting economic growth, it is surprising that

we know little about why order imbalance can destabilize markets and when markets are most

vulnerable to destabilizing order imbalance. This paper addresses both of these questions.

Paradoxically, standard market microstructure models with asymmetric information predict

that order imbalances stabilize markets ex-post, increasing liquidity and reducing volatility

(e.g., Kyle (1985), Glosten and Milgrom (1985)). This prediction follows from the standard

assumption that market participants are fully aware of the level of adverse selection (the prob-

ability of informed trading and/or the quality of informed traders’ information). Under such

an assumption, the effect of order imbalance is trivial—it reveals private information about the

fundamental value, reducing uncertainty, and thereby increasing liquidity (lower price impacts

in the Kyle framework and narrower bid-ask spreads in the Glosten-Milgrom framework). This

prediction of standard microstructure models—that we should expect calmer and more liquid

markets following periods of large order imbalances is at odds with practice. What is missing

from the standard models, we propose, is learning about adverse selection.

Our contribution to the literature is to model the process by which market participants learn

about adverse selection risk (‘toxicity’) from order flow, in particular order imbalance, and study

the implications of this learning process. To an otherwise standard sequential trade model, we

add uncertainty about the proportion of informed traders (composition uncertainty) and/or the
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quality of their signals (signal quality uncertainty), resulting in uncertainty about the level of

adverse selection. Reflecting a practical challenge faced by real-world liquidity providers, mar-

ket participants in our model must learn about toxicity, rather than knowing the probability of

informed trading and the quality of informed traders’ information. This learning occurs from

order flow. Intuitively, because informed trading tends to result in order imbalance (informed

traders all tend to buy when prices are too low and sell when prices are too high), observing an

episode of highly unbalanced order flow acts as a signal that there is likely to be a high propor-

tion of informed traders or that informed traders have very precise information. This upward

revision in perceived adverse selection risk can cause liquidity providers to set wider spreads to

protect themselves from higher toxicity, as well as sharp price adjustments as the information

contained in past order flow is reassessed. Such effects, which all follow from learning about

adverse selection, oppose the standard stabilizing effect of order imbalance (learning about fun-

damental value). The tension between these stabilizing and destabilizing effects is what allows

our model to illustrate why order imbalance can sometimes be destabilizing and offer insights

about when the destabilizing effects are likely to dominate the stabilizing effects.

We use our model to explore how markets respond to three general order flow patterns —

balanced orders, sequences, and reversals. Balanced orders occur when the market maker re-

ceives an equal number of buy and sell orders. Sequences are consecutive buy or sell orders.

Reversals occur when a sell order follows consecutive buy orders or vice versa. Our analysis

delivers four important implications for the dynamics of security prices.

First, balanced orders always stabilize the market. By receiving balanced orders, the market

maker maintains her initial beliefs about the security value and revises her belief about adverse

selection risk downward. This leads the information content of buy and sell orders to be time-

varying and symmetric—informativeness of orders and bid-ask spreads decrease after a period

of balanced orders due to lower perceived adverse selection risk. Even this basic effect is in

contrast to standard microstructure models with only fundamental value uncertainty because in

such models balanced order flow reveals no new information and thus has no effect on prices or

liquidity.

Second, a sequence of unbalanced order flow (a series of buys or a series of sells) has two

effects, with opposing impacts on liquidity. Unbalanced order flow allows the market maker to

learn about the fundamental value (revising beliefs upward in response to buys and downward in
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response to sells), similar to standard models. This effect tends to make the market more liquid

due to reduced uncertainty about the security value. Yet it also leads the market maker to revise

her belief about the level of adverse selection risk upward, which tends to make the market less

liquid. This means that, unlike in the standard models, order imbalances can be destabilizing.

We characterize the necessary and sufficient conditions for order imbalance to be destabilizing.

We show that order imbalance destabilizes the market when the initial belief about the adverse

selection risk is sufficiently low. This means that financial markets are more vulnerable to order

imbalances in times of low perceived toxicity, but can digest more imbalance when toxicity is

believed to be high. While this result might seem surprising at first, the intuition is that a large

order imbalance when it is not expected presents a larger shock than when the market expects

unbalanced order flow.

Third, reversals in order flow (e.g., a sell following a string of buys) can restore liquidity.

While this result is intuitive because reversals alleviate the imbalance in order flow received by

liquidity providers, it in fact contrasts with standard models and highlights the important role

played by learning about adverse selection. In a standard model without learning about adverse

selection, a reversal in order flow makes the market less liquid, as it increases uncertainty about

the fundamental value. While this effect is also present in our model, an additional effect

emerges from learning about adverse selection—a reversal leads the market maker to revise

downward her belief about the level of adverse selection risk, which tends to improve liquidity.

A fourth interesting effect of learning about adverse selection, which we term “repricing his-

tory”, explains accelerating price impacts, asymmetry in the information content of orders, and

sharp price movements. When the market maker is uncertain about the proportion of informed

traders or the quality of their information, an order has two components to how it impacts the

market maker’s beliefs about the fundamental value. The first is simply that buys increase the

likelihood that the fundamental value is high and vice versa because informed traders tend to

buy when the price is below the fundamental value—an effect that drives price discovery in

standard models. But a second effect is that the market maker also updates her beliefs about

the level of adverse selection or informativeness of order flow and then uses this new belief to

reassess what she had learned from past order flow (“repricing history”). If an order increases

the market maker’s beliefs about the informativeness of order flow, she gives more credit to past

orders and prices adjust accordingly (they move in the direction of the imbalance). For example,
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a market maker that receives a buy after a series of buys will revise upward her beliefs about

the informativeness of order flow (due to a larger imbalance), leading her to reassess the past

buy imbalance as more informed. Viewing the past buy imbalance as more informed leads to an

additional upward revision in the expected fundamental value and thus a larger price increase

than in the absence of learning about adverse selection. In fact, this mechanism can lead to ac-

celerating price impacts in trade sequences, similar to those observed empirically during flash

crashes. For instance, in a sequence of sells, each subsequent sell not only signals the funda-

mental value is likely to be low but also signals that the previous sells were more informed than

initially believed compounding the downward revision in beliefs about fundamental values.

In addition to accelerating price impacts with continuations in order flow, repricing history

also implies the information content of buys and sells will be asymmetric and time-varying, de-

pending on the past order flow. More precisely, reversals in the flow (e.g., a buy after a series of

sells, or a sell after a series of buys) decrease the market maker’s beliefs about the informative-

ness of order flow and are more informative than continuations in the flow (buys following buys,

or sells following sells). Intuitively, if an order decreases the market makers beliefs about the

informativeness of order flow, she gives less credit to past orders and prices adjust accordingly

(they move opposite to the direction of the imbalance). Rather than accelerating price impacts,

this scenario can result in sharp price reversals. For example, a market maker that receives a sell

after a series of buys revises downward her beliefs about the informativeness of order flow (due

to a smaller imbalance), leading her to reassess the past buy imbalance as being less informa-

tive than previously believed. This leads to an additional downward revision in the likelihood

of high fundamental value and a larger price decrease than in the absence of repricing history.

The repricing history effect predicts that the price adjustments to order flow can be partic-

ularly sharp due to accelerating price impacts and more informative reversals in order flow.

For example, a long string of sell orders similar to flash crashes will lead to accelerating price

impact on the way down (high probability of informed trading due to the strong order imbal-

ance), leading to sharp decline in the price. A few buy orders at such time will recover the price

quickly due to the repricing history effect. The result is a sharp downward price movement and

a quick recovery, amplified by learning about adverse selection.

By accounting for learning about adverse selection, our model provides a rich characteriza-

tion of the dynamics of security prices in response to order flow and provides intuition about the
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prevalence of flash crashes with the rise of algorithmic trading. The model explains why price

impacts can be asymmetric and time-varying (as has been empirically documented), without

turning to frictions such as short selling constraints.1 The results are also consistent with the

empirical research by Hasbrouck (1991) that the trades that arrive when the spread is wide have

a greater price impact. The analysis points out that the prevalence of the flash crashes in the

algorithmic era may be related to the increased composition and signal quality uncertainty due

to the increased complexity of financial markets and their participants.

One way to view the relation between our model and early market microstructure models

(e.g., Glosten and Milgrom (1985), Kyle (1985)) is that by adding learning about adverse selec-

tion, we allow the model to better reflect the current market structure. At the time of the original

models, designated market makers (DMMs) with affirmative obligations to provide two-sided

quotes and maintain orderly markets were integral to the functioning of US equity markets.

The relative lack of competition faced by DMMs at the time meant they could cross-subsidize

liquidity through time, which helped maintain orderly markets and reduce fluctuations in liq-

uidity. They could keep the spread relatively stable, making excess profits in good times (when

adverse selection is low) and using those excess profits to subsidize liquidity provision in bad

times (when adverse selection is high). Thus, there was less incentive to learn about time-

varying adverse selection risk and ensure spreads always reflected the level of toxicity. The

abolishment of DMM monopolies and resulting competition in liquidity provision eliminated

the ability to cross-subsidize liquidity through time. This is because a liquidity provider with-

out affirmative obligations could undercut the DMMs quotes during good times when adverse

selection is low to capture some of the excess profit and step away when adverse selection be-

comes high. Importantly, efficient learning about the time-varying level of adverse selection,

or the ‘toxicity’ of order flow, allowing liquidity to be priced accurately at every point in time

is crucial for a liquidity provider to remain competitive in today’s major equity markets. Thus,

we argue that our model better reflects the behavior of today’s liquidity providers and therefore

provides a better description of the dynamics of order flow, liquidity, and prices.

The next section relates this paper to the literature. In Section 3, we introduce a benchmark

model that does not require learning about adverse selection to illustrate how order imbalance
1 Empirical research in market microstructure finds that markets react to buy and sell orders asymmetrically (e.g.,
Kraus and Stoll (1972), Keim and Madhavan (1996), Chiyachantana et al. (2017)). Saar (2001) characterizes
the conditions for the positive and negative price impact asymmetry between buy and sell orders by focusing on
short-selling and diversification constraints of the institutional traders.
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stabilizes the market by reducing uncertainty about the fundamental value. In Section 4, we ex-

tend the model to include uncertainty about adverse selection (proportion of informed traders).

In Section 5, we investigate the liquidity and price dynamics in the extended model, and charac-

terize the conditions for liquidity deteriorations and sharp price movements. Section 6 examines

the implications of our results for empirical research. Section 7 discusses some extensions and

generalizations of our model. Section 8 concludes. The details of extensions and proofs are

collected in the appendices.

2. RELATED LITERATURE

Order imbalance can be caused by many factors (e.g., informed trade, macroeconomic vari-

ables, “fat-finger” trades). By focusing on traders’ demand functions, much of the market crash

literature focuses on the causes of order imbalance (e.g., Gennotte and Leland (1990), Barlevy

and Veronesi (2003), Hong and Stein (2003)). In this paper, instead of the causes of order

imbalance, we focus on its effects. Our model builds on Glosten and Milgrom (1985), which

models financial markets as a sequential trading process with one source of uncertainty—the

security payoff. Our paper is related to a subset of market microstructure literature that studies

environments where market participants face multiple dimensions of uncertainty.

In environments with uncertain information quality, Romer (1993) suggests a possible ratio-

nal explanation for the October 1987 crash and Blume, Easley and O’Hara (1994) investigate

the informational role of volume for technical analysis in a rational expectations framework. In

recent studies, Gao, Song and Wang (2013) generate multiple non-linear equilibria with strate-

gic information complementarity and Banerjee and Green (2015) establish empirically relevant

return dynamics such as asymmetric reaction to news, volatility clustering, and leverage effects

in a rational expectations framework with an uncertain proportion of informed traders. The

trading process in a rational expectations framework is not flexible enough to investigate our

effects of interest. One reason is that the aggregation of orders in a batch-clearing system pre-

vents them from taking different levels of informativeness at different times. The second and

related reason is that in a batch-clearing system trades clear at a single price. Our focus is on

how the market maker learns from order flow and when this learning stabilizes and destabilizes

financial markets. Therefore, in our model, the dynamics of the quotes and the bid-ask spread

play important roles in evaluating the evolution of liquidity.
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In a sequential trade model, Easley and O’Hara (1992) introduce “event uncertainty” (uncer-

tainty about whether an event that gives rise to private information about the security value has

occurred) to show the relevance of time and volume in the market maker’s learning process.

Without an information event, the market is only populated by uninformed traders, who (unlike

informed traders) sometimes choose not to trade. In this setting, the rate of trade arrivals (trades

per unit time) is higher following an information event and therefore the market maker learns

from the time between trades. In our model, the market maker always faces an adverse selec-

tion problem but to an uncertain degree. Our focus is learning from the order imbalance rather

than volume or the pace of trading. Order imbalance is important in how participants would

learn about the presence of informed traders and the quality of their information. For exam-

ple, consider an increase in the arrival intensity of uninformed traders that will increase volume

per unit time but not adverse selection. In contrast, an increase in the imbalance between buy-

ers and sellers signals high adverse selection risk and toxicity in the order flow. Our focus on

learning from order imbalance rather than the time between trades produces a vastly different

set of insights and empirical implications about the dynamics of prices and liquidity. Learning

about adverse selection from order imbalance as in our model rather than from the clock time

between trades as in Easley and O’Hara (1992) is consistent with recent empirical measures

of toxicity, such as VPIN (e.g., Easley, López de Prado and O’Hara (2011)). VPIN seeks to

measure toxicity (adverse selection risk) using a volume clock (thereby explicitly disregarding

the clock time between trades) based on order imbalances much like how liquidity providers in

our model infer the level of adverse selection.2 Thus, a further contribution of our paper is in

providing a theoretical justification for recent empirical toxicity measures such as VPIN.

Avery and Zemsky (1998) propose multiple dimensions of uncertainty with non-monotone

signals as a possible explanation for the herd behavior and market mispricing. In our model,

we stick to more common monotone information structures that rule out herding and show

that order imbalance can destabilize markets when there is an additional source of uncertainty.3

2 Our model (unlike Easley and O’Hara (1992)) is in “event time” or uses a “volume clock” (trade arrivals index
time).
3 The non-monotone signals in Avery and Zemsky (1998) exploit a second source of uncertainty (about whether
an information event has occurred or about the precision of informed traders’ signals). They assume that if an
information event has not occurred, the informed traders know with certainty. However, if an information event
has occurred, the informed traders know that an information event has occurred, but they only have a noisy signal
about whether it was good or bad news. For this reason, when an informed trader arrives and an information event
has occurred, if there has been a significant price run-up, the informed might infer that it is more likely that there
has been good news, not bad news even if he receives the noisy bad news signal, and thus he throws away his
information and herds.
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The destabilizing effects of order imbalance that we analyze are quite different from those in

Avery and Zemsky (1998). First, the mechanism is different. In our model, order imbalance

reveals information about adverse selection, whereas in Avery and Zemsky order imbalance can

be destabilizing because herding can occur and the market maker cannot distinguish between

herding and trading on private signals. Second, the nature of the instability is different. In our

model, the second source of uncertainty causes order imbalance to move prices more sharply,

widen spreads, and increase volatility. Gervais (1997) also studies a sequential trade model in

which the market maker is uncertain about the quality of informed traders’ signal to argue that

financial markets do not necessarily evolve in the direction of efficient markets. In his setting,

the evolution of beliefs are path-dependent due to the independence of uncertainties and the

bid-ask spread can stick forever at a certain level in which the same equilibrium is repeated in

every subsequent period leading to information cascade.

This is the first paper, to our knowledge, to show how learning about the level of adverse

selection from the order flow can lead to sudden liquidity dry-ups and sharp price movements

in the face of large order imbalances.

3. THE BENCHMARK MODEL

This section presents a benchmark model that mirrors the classic market microstructure mod-

els with uncertainty only about the fundamental value. In this setting, we illustrate the stabi-

lizing effect of order imbalance. The benchmark model allows us to provide a contrast to the

subsequent models with composition uncertainty in Section 4 and other sources of uncertainty

(i.e., fundamental value, composition, and signal quality uncertainty) in Appendix A.

3.1. Setup. We adopt a Glosten-Milgrom framework of one risky security and three types of

traders; informed traders, uninformed traders, and a competitive market maker. Trade takes

place in t = 1, ..., T periods and the risky security pays off in period T + 1. The payoff V̂ takes

one of two values from the set V̂ ∈ {0, 1} with an initial prior probability Pr(V̂ = 1) = p1,

where 0 < p1 < 1. For ease of exposition, we assume p1 = 0.5 in our analysis and address

p1 6= 0.5 if relevant. Let Dt denote the trade direction, Dt = −1 for a sell, Dt = +1 for a

buy, and Pt denote the transaction price at time t. Public information at time t consists of the

sequence of past buys and sells and their transaction prices, denote by ht = {Dτ , Pτ}t−1
τ=1.4

4 For convenience, unions {·, ·}0τ=1 are taken to equal ∅, and both sums
∑0
τ=1 and products

∏0
τ=1 are taken zero.
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As in Glosten-Milgrom type models, the risk-neutral, competitive market maker posts bid

and ask quotes, for a fixed volume (normalized to one unit), to earn zero expected profit. At

each time t, a trader arrives at the market and can buy at the ask or sell at the bid. With a

probability of α the trader arriving at the market is informed and with a probability of 1− α he

is uninformed. We focus on interior probability or intensity of informed trading, α ∈ (0, 1), as

this is the empirically relevant case. After each trade, the competitive market maker updates her

beliefs about the security payoff and posts new quotes before the next trader arrives.

The informed traders are risk neutral and maximize their expected profits by trading on a

serially received signal {θt} about the risky security payoff. The signal takes either H (high) or

L (low), θt ∈ {H,L}, and the quality of the signal is measured by

q = Pr{θt = H|V̂ = 1} = Pr{θt = L|V̂ = 0}, (1)

with q ∈ (1/2, 1]. When q = 1, the informed traders’ information is perfect. When q = 1/2,

the signal is completely uninformative. By Bayes’ theorem, an informed trader who receives

θt = H will revise his private value to

vHt =
pt · q

[pt · q + (1− pt) · (1− q)]
> pt, (2)

and who receives θt = L will revise his private value to

vLt =
pt · (1− q)

[pt · (1− q) + (1− pt) · q]
< pt, (3)

where pt = Pr(V̂ = 1|ht) = Et[V̂ |ht] is the current expected value of V̂ conditional on the

public information history ht.

The uninformed traders trade according to their liquidity needs or hedging purposes, which

are exogenous to the model. For convenience, we assume that they buy and sell with equal

probabilities with perfectly inelastic demand.5 The structure of the economy described so far is

common knowledge among all participants.

3.2. Equilibrium. The standard Bertrand competition argument that the competitive market

maker expects a zero profit implies that the market maker’s bid (ask) quote is the expected

future payoff of the risky security conditional on receiving a sell (buy) order. That is, the bid

5 In Section 7, we discuss the impacts of allowing discretionary uninformed trading on our results.
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price Bt = Et[V̂ |ht, Dt = −1] and the ask price At = Et[V̂ |ht, Dt = +1]. Now we formally

define the equilibrium for the benchmark economy.

Definition 1. An equilibrium consists of the market maker’s prices, informed traders’ trading

strategies, and posterior beliefs such that:

(i) the bid and ask prices satisfy the zero-expected-profit condition, given the market maker’s

posterior beliefs;

(ii) the informed traders at time t maximize their expected profits given the signal θt and the

public information history ht;

(iii) the beliefs satisfy Bayesian updating.

In the benchmark equilibrium with only fundamental value uncertainty, an informed trader

who arrives at the market with θt = H (θt = L) will buy (sell) if his private valuation is higher

(lower) than the ask (bid) price at time t, vHt > At (vLt < Bt). In equilibrium, vHt > At and

vLt < Bt, and therefore the informed traders always trade in the direction of their information.6

This characterizes the equilibrium At and Bt in the following proposition.

Proposition 2. The equilibrium bid and ask prices are respectively given by:

Bt =
pt

pt + δ · (1− pt)
, (4)

At =
pt

pt + δ−1 · (1− pt)
, (5)

and the bid-ask spread is given by

St =
pt · (1− pt) · (δ − δ−1)(

pt + δ · (1− pt)
)
·
(
pt + δ−1 · (1− pt)

) , (6)

where pt = Et[V̂ |ht] and δ = 1+α·(2·q−1)
1−α·(2·q−1)

. In addition, δ is always greater than unity and in-

creases with the intensity of informed trading α and the quality of the informed traders’ private

information q.

In this equilibrium, the market is always open. This is because the market maker can always

set a spread wide enough to recoup from the uninformed traders the losses she expects to incur
6 The reason is that if Bt and At are set less than vLt and higher than vHt (i.e., Bt < vLt and At > vHt ), then
no informed traders would trade and all trades would arise from the uninformed traders. The competitive, zero
expected profit Bt and At without any informed trading are equal to the current expected security value, Bt =
At = pt, with zero spread. Because the signals are always informative (q > 1/2), vHt > pt and vLt < pt and
therefore in a competitive equilibrium, Bt and At cannot be less than vLt and higher than vHt respectively.
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from the informed traders. In addition, the market maker sets a wider spread with the intensity

of informed trading and the quality of their signals. It follows from Eqs. (4) and (5) that the

bid price decreases and the ask price increases with the informativeness of orders δ, leading to

a wider bid-ask spread. Since δ increases with the intensity of informed trading and the quality

of their signals, it measures the informativeness of orders and the adverse selection risk.

3.3. The dynamics of the quotes and the bid-ask spread. In this paper, we are particularly

interested in the dynamics of the quotes and the bid-ask spread. For this purpose, we character-

ize the dynamics of the risky payoff as

pt+1 = Et+1[V̂ |ht, Dt, Pt] = Et+1[V̂ |ht+1] =


Bt, if Dt = −1,

At, if Dt = +1,

(7)

and re-express in a particularly convenient form in the following lemma. Eq. (7) follows from

the fact that, in this setting, the current expected security value is the last realized transaction

price.

Lemma 3. Let Nt =
∑τ=t−1

τ=1 Dτ be the order imbalance up to (but not including) the trade at

time t (number of buys minus number of sells). Then the dynamic expectations of the market

maker about the risky security payoff satisfy

pt+1

1− pt+1

=
pt

1− pt
· δDt , (8)

and hence

pt =
δNt

1 + δNt
. (9)

Eq. (8) shows that the odds of a high future value are revised upward following a buy and

downward following a sell. The amount by which the expectations are revised is determined

by the informativeness of trades. More precisely, the revision in the expectation about the

payoff is stronger with more informative trades (or more informative trades have higher price

impacts). Eq. (9) shows that all of the information contained in the past trades and prices can be

represented by the order imbalance, Nt, a sufficient statistic for the history of the order flows.

This means that the trade sequences that do not change the order imbalance (i.e., balanced order

flows) do not change the market maker’s beliefs about the security payoff. Thus, the expected
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payoff and the bid-ask spread at any point in time can be expressed succinctly as a function of

the order imbalance up to that point in time and the informativeness of trades.

To further facilitate interpretation, we insert Eq. (9) into Eq. (6) and re-express the bid-ask

spread as a function of the informativeness of orders and order imbalance as

St =
δNt · (δ − δ−1)

(δNt + δ) · (δNt + δ−1)
. (10)

Interestingly, Eq. (10) also shows that the bid-ask spread decreases with order imbalances in

either direction, excess buy or sell orders, and takes its maximum value of

S̄ =
δ − 1

δ + 1
, (11)

with balanced order flow (i.e., Nt = 0).7

In Figure 1, we illustrate the uncertainty about the payoff, pt, and the bid-ask spread in the

face of large order imbalances for three possible values of the informativeness of orders. Panel

(a) illustrates that the market maker revises the expected value of the security payoff upward

when she has a positive order imbalance and downward when she has a negative order imbal-

ance. Moreover, the upward and downward revisions are larger with more informative trades.

However, irrespective of the informativeness of orders, uncertainty about the payoff is high-

est when the market maker has balanced orders. Panel (b) shows that the spread is maximum

when the market maker has balanced orders and declines in response to order imbalances in

either direction. This illustrates the stabilizing role of order imbalance in the benchmark model

with only fundamental value uncertainty. Intuitively, order imbalance is informative about the

risky payoff and therefore resolves uncertainty (either pt → 0 or pt → 1). Moreover, the bid-

ask spread declines faster with more informative trades because uncertainty is resolved faster.

Formally, we have the following corollary.

Corollary 4. In the presence of uncertainty only about the security payoff;

(i) the market maker observing balanced order flows (i.e., Nt = 0) learns nothing and

therefore does not update her beliefs about the payoff;

7 In general, the maximum spread occurs when the market maker has maximum uncertainty (i.e., pt = 0.5)
about the payoff. With a balanced order flow, the market maker learns nothing and sustains her initial maximum
uncertainty (i.e., p1 = 0.5). In fact, when p1 > 0.5 (resp. p1 < 0.5), the same maximum spread corresponds to a
negative (resp. positive) order imbalance. The reason for this is that the maximum uncertainty, pt = 0.5, occurs
with a negative (resp. positive) order imbalance when p1 > 0.5 (resp. p1 < 0.5).
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Figure 1. The dynamics of the belief pt and the spread St with respect to order imbalance Nt.
Panel (a) plots the conditional expected value of the payoff pt and (b) plots the spread St against the order
imbalance for three different values of informativeness of trades, δ = 1.5, 2, and 3 when p1 = 0.5.

(ii) the market maker with a positive (negative) order imbalance increases (decreases) the

conditional expected value of the payoff and the magnitude of the increase (decrease) is

larger with more informative trades;

(iii) with balanced order flows (i.e.,Nt = 0), the bid-ask spread St at time t equals the initial

bid-ask spread S1;

(iv) the bid-ask spread narrows with order imbalances in either direction and converges to

zero as the order imbalance goes to infinity (i.e., order imbalance stabilizes the market).

The stabilizing role of order imbalances in the benchmark model hinges upon having only

uncertainty about the fundamental value of the security. These results are at odds with what we

observe in financial markets during and following large order imbalances. The experience of

the U.S. financial markets on May 6, 2010, (“Flash Crash”) and treasury markets on October

15, 2014, (“Flash Rally”) are recent extreme examples of the destabilizing role of negative

and positive order imbalances, respectively. Similar results are also observed during the global

financial crisis in 2007-2009, Asian financial crisis in 1997-1998, October 1987 crash, and

many other extreme events (e.g., Easley and O’Hara (2010), Scholes (2000)). The destabilizing

role of order imbalance is not confined to the aggregate market level extreme events. On a

smaller scale, instantaneous price moves due to the destabilizing role of order imbalance are

more common with the rise of algorithmic trading. In practice, order imbalance is an indication

of the toxicity in order flow. Unlike the practice, however, in the benchmark model, order

imbalance merely serves to convey information about the fundamental value of the security.
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The bid-ask spread arises entirely due to the known adverse selection risk of the competitive

market maker and approaches to zero in the face of large order imbalances — order imbalance

stabilizes the market when the market maker knows the true information structure of the market.

4. LEARNING ABOUT ADVERSE SELECTION

In this section, we introduce an additional source of uncertainty about the adverse selection

of the market maker to explore a destabilizing role of order imbalance. Adverse selection risk

is a function of the number of informed traders and the quality of their information. Adding un-

certainty and learning about either of these parameters produces qualitatively similar results and

therefore in the interests of simplicity, we focus on uncertainty about the number of informed

traders.

Two key differences distinguish this model from the benchmark model. First, the market

maker’s quotes are affected not only by beliefs about the security payoff, parameters affecting

the adverse selection risk (i.e., the probability of informed trading and the quality of informed

traders’ information), but also uncertainty about the adverse selection risk. Second, the market

maker’s beliefs about adverse selection risk change over time as the trading process evolves.

4.1. Uncertainty about the proportion of informed traders. We keep all the features of the

benchmark model as described in Section 3 (we set q = 1 for notational simplicity) and incorpo-

rate uncertainty about the composition of market participants. We assume that the probability of

informed trading takes either low or high values from the set α̂ ∈ {αL, αH} with an initial prior

probability of Pr(α̂ = αH) = π1, where 0 < αL < αH < 1 and 0 < π1 < 1. Without perfect

knowledge about the fractions of the informed and uninformed traders in the market, the market

maker’s beliefs about the composition of traders change depending on the evolution of the trad-

ing process.8 In what follows, we denote the market maker’s belief about the high proportion

of informed traders in the market conditional on the trading history as πt = Pr{α̂ = αH |ht}.

With two possible values for the probability of informed trading and the risky payoff (i.e.,

α̂ ∈ {αL, αH} and V̂ ∈ {0, 1} ), there are four different combinations of the level informed

trading and the payoff realization. Denote the states S ∈ {s1, s2, s3, s4}, where

8 Making other market participants (in addition to the market maker) uncertain about the composition of market
participants does not affect the model since the informed traders do not use the price function to extract information
about the eventual security payoff and the uninformed traders are assumed to trade exogenously. We discuss a
generalization of this assumption in Section 7.
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s1 = {α̂ = αH , V̂ = 1}, s2 = {α̂ = αH , V̂ = 0},

s3 = {α̂ = αL, V̂ = 1}, s4 = {α̂ = αL, V̂ = 0}.
(12)

Since these states are disjoint the market maker’s beliefs about the payoff and the composition

of traders at time t are, respectively, given by

pt = Pr(V̂ = 1|ht) = Pr(s1|ht) + Pr(s3|ht), (13)

πt = Pr(α̂ = αH |ht) = Pr(s1|ht) + Pr(s2|ht). (14)

It is very intuitive to expect different order flows with different compositions of market par-

ticipants. Intuitively, a higher proportion of informed traders is more likely to result in larger

positive (negative) order imbalances when V̂ = 1 (V̂ = 0). The market maker observing more

unbalanced orders than expected therefore will increase her belief about the high proportion of

informed traders in the market and vice versa. Before considering the market maker’s learn-

ing problem in detail, we characterize the equilibrium quotes and bid-ask spread in the trading

period t, extending the results from the benchmark model.

Proposition 5. The equilibrium bid and ask prices in the presence of composition uncertainty

are respectively given by

Bα,t =
pt

pt + δst · (1− pt)
, (15)

Aα,t =
pt

pt + (δbt )
−1 · (1− pt)

, (16)

and the bid-ask spread is given by

Sα,t =
pt · (1− pt) · (δst − (δbt )

−1)(
pt + δst · (1− pt)

)
·
(
pt + (δbt )

−1 · (1− pt)
) , (17)

where

δbt =
(1 + αH) · Pr(s1|ht) + (1 + αL) · Pr(s3|ht)
(1− αH) · Pr(s2|ht) + (1− αL) · Pr(s4|ht)

·
(

1− pt
pt

)
(18)

and

δst =
(1 + αH) · Pr(s2|ht) + (1 + αL) · Pr(s4|ht)
(1− αH) · Pr(s1|ht) + (1− αL) · Pr(s3|ht)

·
(

pt
1− pt

)
(19)

show the informativeness of buy and sell orders respectively. In addition, δbt and δst are always

greater than unity and increase with the intensities of informed trading αL and αH .
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The forms of the bid, ask prices and the spread are familiar from the benchmark model (see

Eqs. (4), (5), and (6)) and most of the intuitions carry forward. There are three main differences

from the benchmark model (see Proposition 2). First, the market maker’s belief about the high

informed trading πt in Eq. (14) is time-varying. Second, unlike the benchmark model with

constant informativeness of orders for buy and sell orders, the information content of buy and

sell orders in Eqs. (18) and (19) are different and vary through time due to the time-varying

beliefs about the composition of traders and the security payoff.9 This leads to asymmetric

reactions of the bid and ask quotes in response to buy and sell orders. Third, the dynamics

of the expectations about the payoff pt are not only affected by the order imbalance and the

(constant) informativeness of orders as in the benchmark model, but also by the changing beliefs

about the composition of market participants and the time-varying informativeness of orders.

For example, as the orders become more informative, the market maker learns the fundamental

value faster. We formalize this intuition in the following lemma by characterizing the dynamics

of the beliefs about the risky payoff.

Lemma 6. The dynamic expectations of the market maker about the risky security payoff satisfy

pt+1

1− pt+1

=
pt

1− pt
· δbt if Dt = +1, (21)

and
pt+1

1− pt+1

=
pt

1− pt
· (δst )−1 if Dt = −1. (22)

Lemma 6 shows how pt+1 is obtained from pt when the market maker observes a buy or a

sell order. It is straightforward to check that Lemma 6 reduces to Lemma 3 in the benchmark

model when the market maker knows the composition of traders. In fact, when α = αL = αH ,
9 Unlike the benchmark model, the informativeness of buy and sell orders, δbt and δst , involve the market maker’s
belief about the risky payoff along with the parameters of the adverse selection risk. This occurs because over
time the market maker’s belief about the risky payoff and the composition of traders are dependent. The best
way to see that δbt and δst are indeed analogous to the informativeness of orders δ in the benchmark model is to
assume independence between α̂ and V̂ . Then, substituting independence conditions (i.e., Pr(s1|ht) = πt · pt,
Pr(s2|ht) = πt · (1 − pt), Pr(s3|ht) = (1 − πt) · pt and Pr(s4|ht) = (1 − πt) · (1 − pt)) into Eqs. (18) and (19)
leads to symmetric informativeness for buys and sells

δbt = δst =
1 + (πt · αH + (1− πt) · αL)

1− (πt · αH + (1− πt) · αL)
, (20)

which is only dependent on the parameters of adverse selection as in the benchmark model. Additionally, assuming
independence about the composition of traders and the fundamental value leads the sequence of orders to matter
(path-dependence) in the model, consistent with the empirical findings in Hausman, Lo and MacKinlay (1992).
The path-dependence is not integral for our analysis and the sufficient statistic in our setting is order imbalance
and time (Nt, t), yet the destabilizing role of order imbalance with a different magnitude is also present with
path-dependence.
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it follows from Eqs. (18) and (19) that δbt = δst = δ =
(

1+α
1−α

)
leading to Eq. (8). Similar to Eq.

(8) in the benchmark model, Eqs. (21) and (22) show that the odds of a high future value are

revised upward following a buy and downward following a sell. Unlike the benchmark model,

however, the upward (resp. downward) revisions in δbt and δst lead to stronger (resp. weaker)

revisions in pt.

4.2. Learning about the payoff and proportion of informed traders. In this subsection, we

study how the market maker learns about the proportion of informed traders. The task is to

determine how πt is updated when the market maker observes order flow up to time t. One

way to understand the learning process of the market maker is to consider the probability of

buy and sell orders in different states. A buy order is most likely to occur in a market with a

high proportion of informed traders and high security payoff (i.e., S = s1). Similarly, a sell

order is most likely to occur in a market with a high proportion of informed traders and low

security payoff (i.e., S = s2). More precisely, it follows from the definitions of the states that

the probability of an order Dt ∈ {−1, 1} in each state is given by

Pr(Dt|s1) =
1 + αH ·Dt

2
, Pr(Dt|s2) =

1− αH ·Dt

2
,

Pr(Dt|s3) =
1 + αL ·Dt

2
, Pr(Dt|s4) =

1− αL ·Dt

2
.

(23)

The probabilities in different states imply that in the presence of uncertainty about the pro-

portion of informed traders, the direction and amount of order imbalance are informative about

the payoff and only the amount of order imbalance is informative about the proportion of in-

formed traders. The direction is informative about the payoff because high fundamental value

states (i.e. s1 and s3) have higher buy and lower sell probabilities than the corresponding low

fundamental value states (i.e., s2 and s4), leading the positive (resp. negative) imbalance to in-

crease the probabilities of s1 and s3 (resp. s2 and s4). The amount of imbalance is informative

about the payoff since more unbalanced buy (resp. sell) orders increase s1 more than s3 (resp.

s2 more than s4). The amount of imbalance is also informative about the proportion of informed

traders because buy and sell probabilities in low informed states (i.e., s3 and s4) are closer to

0.5, implying that balanced orders will increase low informed states and unbalanced orders will

increase high informed states (i.e., s1 and s2). However, the direction of imbalance is uninfor-

mative about the proportion of informed because excess buy orders increase s1 in the same way

as excess sell orders increase s2, leading to the same belief about the informed trading.
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As the market maker is Bayesian, her belief about the particular state given the trading history

ht with bt buy and st sell orders follows from Bayes rule as

Pr(s1|ht) =
p1 · π1 ·

(
1 + αH

)bt(
1− αH

)st
f(ht)

, (24)

where

f(ht) = p1 · π1 · (1 + αH)bt(1− αH)st + (1− p1) · π1 · (1− αH)bt(1 + αH)st

+ p1 · (1− π1)(1 + αL)bt(1− αL)st + (1− p1)(1− π1)(1− αL)bt(1 + αL)st .

(25)

The probabilities of the other states are calculated similarly. By Eqs. (13) and (14), the revision

in each state’s probability after the trading history ht is reflected in the market maker’s beliefs

about the security payoff and the proportion of informed traders as

pt =
p1 · π1 ·

(
1 + αH

)bt(
1− αH

)st
+ p1 · (1− π1) ·

(
1 + αL

)bt(
1− αL

)st
f(ht)

, (26)

πt =
p1 · π1 ·

(
1 + αH

)bt(
1− αH

)st
+ (1− p1) · π1 ·

(
1− αH

)bt(
1 + αH

)st
f(ht)

. (27)

Eqs. (26) and (27) show that the order imbalance for the given number of trades (event time)

determines the market maker’s beliefs about the payoff and proportion of informed traders since

bt = (t−1)+Nt
2

and st = (t−1)−Nt
2

. It follows from Eq. (26) that the market maker that receives

balanced order flow learns nothing about the fundamental value as in the benchmark model

(i.e., pt = p1). Eq. (26) also show that all else equal, the greater the positive (resp. negative)

imbalance, the more likely it is that the market maker believes the fundamental value of the

security is high (resp. low). Additionally, it follows from Eq. (27) that all else equal, the

greater the imbalance, the more likely it is that the market maker believes the market is highly

populated by informed traders. We summarize the effects of order imbalance for the given

number of trades on the market maker’s beliefs in the following proposition.

Proposition 7. (i) The market maker’s expected value of the security payoff is unchanged with

zero order imbalance and increases (resp. decreases) with positive (resp. negative) order im-

balance; that is pt = p1 when Nt = 0 and ∂pt
∂Nt

> 0. (ii) the market maker’s belief about the

high informed trading increases with order imbalance in either direction; that is ∂πt
∂|Nt| > 0.

To facilitate interpretation, in Figure 2, we contrast the market maker’s expected value of the

security payoff pt and belief about the high proportion of informed traders πt in the benchmark
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Figure 2. The dynamics of the beliefs pt and πt with respect to order imbalance Nt.
Panel (a) plots the conditional expected value of the payoff pt and (b) plots the belief about the high
proportion informed trading πt against the order imbalance for the given time t = 11 for two different
values of low and high informed trading αL = αH = 0.2 (benchmark), and αL = 0.2 and αH = 0.5
(uncertain proportion of informed traders). The initial beliefs are p1 = 0.5 and π1 = 0.5.

and extended models. Panel (a) illustrates that, in both models, the market maker revises the

expected value of the security payoff upward (resp. downward) when she has a positive (resp.

negative) order imbalance. What is different in the presence of uncertainty about the adverse

selection is that the upward and downward revisions are larger with more order imbalance. The

reason for this effect is illustrated in Panel (b), which shows that the market maker’s belief

about the high proportion of informed traders πt increases with order imbalance. The market

maker learns about the fundamental value faster with more order imbalance since more order

imbalance signals the presence of more informative orders. Additionally, Panel (b) shows that

the market maker’s beliefs about the high proportion of informed traders πt is higher (resp.

lower) than her initial belief π1 when the order imbalance for the given time is sufficiently

high (resp. low). Focusing on two extreme cases (zero order imbalance and maximum order

imbalance for the given time), the following corollary formalizes these observations.

Corollary 8. (i) The market maker observing balanced order flows (i.e., Nt = 0 at time t)

revises her belief about the high informed trading downward (i.e., πt < π1). (ii) The market

maker observing sequences of buy or sell orders (i.e., Nt = t − 1 or Nt = −(t − 1) at time t)

revises her belief about the high informed trading upward (i.e., πt > π1).

There are two reasons why these results are of interest. First, in the presence of uncertainty

about the proportion of informed traders, balanced orders will stabilize the market by reducing

the bid-ask spread since the market maker retains her initial belief about the payoff but revises
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her belief about the high informed trading downward. This is in contrast to the benchmark

model, where the market maker observing balanced orders learns nothing and maintains her

initial bid-ask spread (see Corollary 4). Second, consecutive buy or sell orders can destabilize

financial markets by widening the bid-ask spread since they signal the presence of high informed

trading. This is also in contrast to the benchmark model, where the market maker that receives

sequences of buy or sell orders only learns about the payoff and narrows the spread due to the

resolution of uncertainty about the fundamental value. In the presence of uncertainty about the

proportion of informed traders, the market maker during a period of large and temporary selling

(resp. buying) pressure such as the Flash Crash (resp. Flash Rally) updates the expected value

of security payoff downward (resp. upward). While this resolution of uncertainty about the

fundamental value puts downward pressure on the bid-ask spread, there is an opposing effect

on the spread from learning about the adverse selection. The market maker also updates her

belief about the high informed trading in the market and widens the bid-ask spread due to the

increase in the likelihood of high adverse selection risk (high informed trading). Ultimately,

whether the spread widens or narrows following periods of large order imbalance depends on

which effect dominates.

5. LIQUIDITY AND PRICE DYNAMICS

Since we are interested in the role of learning about toxicity in stabilizing and destabilizing

financial markets in the face of different order flow patterns, in this section, we investigate the

liquidity and price dynamics in our model.

5.1. Liquidity distortions. We first examine the effects of different order flows on the evolu-

tion of bid-ask spread to evaluate liquidity in the presence of uncertainty about adverse selec-

tion. For this purpose, we consider the amount of deviation of the bid-ask spread at time t from

the initial spread.10 It follows from Proposition 5 that the initial spread is given by

10 We choose the amount of deviation of the bid-ask spread at time t from the initial spread rather than the deviation
from the benchmark spread for two reasons. First, the deviation from the initial spread shows the net liquidity
distortion due to learning about the fundamental value and adverse selection, which can further be decomposed
into the liquidity distortion due to each learning component, whereas the deviation from the benchmark spread
measures the liquidity distortion due to learning only about adverse selection. Second, we are interested in a stricter
condition to analyze whether order imbalance is destabilizing. The most strict condition to examine destabilizing
order imbalance is to show that the spread is increasing in the order imbalance until a certain threshold order
imbalance. The complexity of Eq. (17) after inserting state probabilities makes a full analytical characterization
of the partial derivative ∂Sα,t

∂Nt
impractical. The second most strict condition is the deviation from the initial spread

since the initial spread is higher than the benchmark spread in the face of a large order imbalance.
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S1 =
δ1 − 1

δ1 + 1
= π1 · αH + (1− π1) · αL, (28)

with equal informativeness of buy and sell orders,

δb1 = δs1 = δ1 =
1 + (π1 · αH + (1− π1) · αL)

1− (π1 · αH + (1− π1) · αL)
. (29)

Combining the bid-ask spread in the presence of uncertainty about adverse selection at time

t in Eq. (17) and the initial spread in Eq. (28) yields

∆St = Sα,t − S1, (30)

where ∆St given by Eq. (B-48) in Appendix B is the net liquidity distortion at time t relative to

the initial spread. The net liquidity distortion ∆St implies stabilizing (resp. destabilizing) order

flow when ∆St < 0 (resp. ∆St > 0). In addition, ∆St includes both the effects of learning

about the fundamental value and proportion of informed traders on the spread. To examine the

contributions of each learning component on the net liquidity distortion, we decompose ∆St

into two components — the distortion due to learning only about the fundamental value and

the distortion due to learning about the adverse selection. Formally, the net liquidity distortion

is given by

∆St = ∆SVt + ∆SAt , (31)

where ∆SVt = St − S1 is the liquidity distortion due to learning about the fundamental value

and ∆SAt = Sα,t − St is the liquidity distortion due to learning about the adverse selection.

We investigate the net liquidity distortion ∆St and its contributors ∆SVt and ∆SAt during three

general order flow patterns: balanced orders, consecutive buy or sell orders, and reversals. As

we investigate each order flow pattern, we refer to Figure 3, where we contrast the dynamics of

belief about the proportion of informed traders, quotes, and spreads of the market maker that

faces this order flow in the benchmark and extended models.

For balanced order flows (i.e., Nt = 0 or bt = st), the informativeness of buy and sell orders

at time t are given by

δbt = δst =
π1 · (1 + αH)st+1 · (1− αH)st + (1− π1) · (1 + αL)st+1 · (1− αL)st

π1 · (1 + αH)st · (1− αH)st+1 + (1− π1) · (1 + αL)st · (1− αL)st+1
< δ1, (32)

leading to
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∆St = ∆SAt =
2 · (δst − δ1)(

1 + δst
)
·
(
1 + δ1

) < 0, (33)

since the market maker in the benchmark model learns nothing and retains her initial spread

(i.e., St = S1 or ∆SVt = 0). Eq. (33) always takes a negative value (i.e., ∆St < 0 for

δst < δ1), meaning that in the presence of uncertainty about adverse selection, balanced order

flow is always stabilizing since it results in the narrower spread relative to the initial (also the

benchmark) spread. This is because the market maker that observes balanced order flow retains

her initial belief about the security payoff (see Proposition 7), but revises down her belief about

the high informed trading (see Corollary 8) as illustrated in Panel (a1) of Figure 3. Panels (a2)-

a(3) of Figure 3 illustrate that balanced order flow is stabilizing in the extended model, whereas

it has no effect on prices or liquidity in the benchmark model.

For consecutive sell orders (i.e., Nt = −(t − 1)), the informativeness of buy and sell orders

at time t are respectively given by

δbt =

[
π1 · (1 + αH) · (1− αH)t−1 + (1− π1) · (1 + αL) · (1− αL)t−1

π1 · (1− αH) · (1 + αH)t−1 + (1− π1) · (1− αL) · (1 + αL)t−1

]
·
[

pt
1− pt

]−1

, (34)

δst =

[
π1 · (1 + αH)t + (1− π1) · (1 + αL)t

π1 · (1− αH)t + (1− π1) · (1− αL)t

]
·
[

pt
1− pt

]
, (35)

where
pt

1− pt
=
π1 · (1− αH)t−1 + (1− π1) · (1− αL)t−1

π1 · (1 + αH)t−1 + (1− π1) · (1 + αL)t−1
. (36)

Unlike balanced order flow, Eqs. (34) and (35) show that during unbalanced orders the infor-

mativeness of buy and sell orders are asymmetric, impacting the beliefs about the fundamental

value asymmetrically. The following corollary characterizes the association between the beliefs

about the fundamental value and the informativeness of orders during unbalanced order flow.

Corollary 9. (i) With a sequence of buy orders (i.e., Nt = t− 1),

pt =

∏t−1
i=1 δ

b
i

1 +
∏t−1

i=1 δ
b
i

, (37)

(ii) With a sequence of sell orders (i.e., Nt = −(t− 1)),

pt =

∏t−1
i=1(δsi )

−1

1 +
∏t−1

i=1(δsi )
−1
. (38)
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Corollary 9 implies that when there is a consecutive buying or selling pressure in the market,

the geometric mean of the informativeness of buy or sell orders up to time t (i.e., (
∏t−1

i=1 δ
b
i )

1
t−1

or (
∏t−1

i=1 δ
s
i )

1
t−1 ) play the same role as the constant informativeness orders in the benchmark

model in determining pt. Inserting the belief dynamics during sell sequences in Eq. (38) into

the characterization of the spread in Eq. (17) obtains the spread as

Sα,t =

∏t−1
i=1(δsi )

−1 ·
(
δst − (δbt )

−1
)(∏t−1

i=1(δsi )
−1 + δst

)
·
(∏t−1

i=1(δsi )
−1 + (δbt )

−1
) . (39)

A similar condition holds for buy sequences, only replacing
∏t−1

i=1(δsi )
−1 with

∏t−1
i=1 δ

b
i . Com-

bining the initial spread and the spreads after consecutive sell orders in the benchmark and

extended models (Eqs. (10), (28), and (39)) obtains ∆St = ∆SAt + ∆SVt , where

∆SVt =
−(δ1 − 1) ·

(
δ
−(t−1)
1 − 1

)2(
δ
−(t−1)
1 + δ1

)
·
(
δ
−(t−1)
1 + (δ1)−1

)
·
(
δ1 + 1

) < 0, (40)

and

∆SAt =

∏t−1
i=1(δsi )

−1 ·
(
δst − (δbt )

−1
)(∏t−1

i=1(δsi )
−1 + δst

)
·
(∏t−1

i=1(δsi )
−1 + (δbt )

−1
) − δ

−(t−1)
1 · (δ1 − δ−1

1 )

(δ
−(t−1)
1 + δ1) · (δ−(t−1) + δ−1

1 )
> 0.

(41)

Eq. (40) shows the downward pressure on the bid-ask spread due to the resolution of uncertainty

about the fundamental value, whereas Eq. (41) shows the upward pressure due to learning about

the adverse selection. Panel (b1) of Figure (3) illustrates that the upward pressure is due to the

increase in the belief about the high proportion of informed trading πt during consecutive sell

orders. It follows from Eqs. (40) and (41) that the upward pressure due to learning about the

adverse selection ∆SAt dominates the downward pressure due to learning about the fundamental

value ∆SVt (i.e., ∆SAt + ∆SVt > 0 ) if and only if

δ1 < 1 +
2 ·
(
δst − (δbt )

−1
)[

2 · (δbt )−1 +
∏t−1

i=1(δsi )
−1 +

∏t−1
i=1(δsi ) · δst · (δbt )−1

] . (42)

A similar condition holds for buy sequences. Eq. (42) shows that when the initial belief

about the proportion of informed traders or the informativeness of orders δ1 is sufficiently low,

a continuous selling pressure leads to a wider spread (i.e., liquidity deterioration) relative to the

initial spread. This is intuitive because order imbalance is not expected when the initial belief
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about the adverse selection (π1 or δ1) is sufficiently low. Thus, it presents a larger shock to a

market maker, leading ∆SAt to dominate ∆SVt . Panel (b2) of Figure 3 illustrates the effects of

multidimensional learning on the quotes of a market maker and contrasts it with the quotes of

a market maker learning only about the fundamental value. The quotes are consistent with the

empirical observations that the bid moves downward faster than the ask during the periods of

large selling pressure (e.g., CFTC-SEC (2010a, 2010b)). Consequently, the faster reaction of the

bid and the delayed reaction of the ask compared to that of the benchmark model lead the spread

to widen in response to order imbalance as illustrated in Panel (b3).11 The next proposition

summarizes the role of learning about toxicity in stabilizing the market during balanced and

destabilizing during unbalanced order flow.

Proposition 10. In the presence of composition uncertainty;

(i) the bid-ask spread is given by

Sα,t = S1 + ∆St, (43)

where S1 is the initial bid-ask spread and ∆St is the (stabilizing for ∆St < 0 and

destabilizing for ∆St > 0) liquidity distortion relative to the initial spread;

(ii) balanced order flows always stabilize the market;

(iii) sequences of sell orders destabilize the market if and only if

δ1 < 1 +
2 ·
(
δst − (δbt )

−1
)[

2 · (δbt )−1 +
∏t−1

i=1(δsi )
−1 +

∏t−1
i=1(δsi ) · δst · (δbt )−1

] ; (44)

(iv) sequences of buy orders destabilize the market if and only if

δ1 < 1 +
2 ·
(
δst − (δbt )

−1
)[

2 · (δbt )−1 +
∏t−1

i=1 δ
b
i +

∏t−1
i=1(δbi )

−1 · δst · (δbt )−1

] . (45)

11 In fact, flash crashes do not only occur on the way down. The sharp price rise in the price of a 10-year US
Treasury security (37 bps. trading range) on 15 Oct. 2014, also known as a “Flash Rally”, is a recent example of
this in which the market functioned with a strained liquidity, a high volatility, and a high trading volume in the
presence of excessive buy orders (e.g., U.S. Dept. of the Treasury et al. (2014)). Consecutive buy orders obtain
symmetric results. In the case of 20 consecutive buys with the same parameter values, πt increases in the same way
it does in 20 consecutive sells since only the amount, not the direction, of order imbalance is informative about πt.
As the bid and ask prices increase with each buy order, the ask price moves upward faster compared to the delayed
reaction of the bid price, leading to a wider bid-ask spread.
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alpha H alpha L pi 1 p 1
0.8 0.2 0.7 0.5

States Pr(buy |state) Pr(sell |state)
s_1 0.900 0.100
s_2 0.100 0.900
s_3 0.600 0.400
s 4 0.400 0.600

t D t b t t-b t N t pi t p t s 1 s 2 s 3 s 4 Pr(h t) s 1 s 2 s 3 s 4 pi t p t
1 -1 0 1 0 0.70 4.26 0.50 0.19 0.81 0.62 - - - - - 0.35 0.35 0.15 0.15 0.70 4.26 4.26 0.50 0.19 0.81 0.62 0.00 0.00 0.00
2 1 1 1 -1 0.70 4.26 0.19 0.05 0.50 0.45 0.10 0.90 0.40 0.60 0.50 0.07 0.63 0.12 0.18 0.70 4.26 2.88 0.19 0.08 0.50 0.42 -0.20 -0.17 -0.02
3 -1 1 2 0 0.70 4.26 0.50 0.19 0.81 0.62 0.18 0.18 0.48 0.48 0.27 0.23 0.23 0.27 0.27 0.47 2.85 2.85 0.50 0.26 0.74 0.48 -0.14 0.00 -0.14
4 1 2 2 -1 0.70 4.26 0.19 0.05 0.50 0.45 0.03 0.24 0.29 0.43 0.20 0.05 0.42 0.21 0.32 0.47 2.85 2.23 0.26 0.14 0.50 0.36 -0.26 -0.17 -0.08
5 -1 2 3 0 0.70 4.26 0.50 0.19 0.81 0.62 0.05 0.05 0.35 0.35 0.14 0.12 0.12 0.38 0.38 0.25 2.07 2.07 0.50 0.33 0.67 0.35 -0.27 0.00 -0.27
6 1 3 3 -1 0.70 4.26 0.19 0.05 0.50 0.45 0.01 0.07 0.23 0.35 0.11 0.02 0.22 0.30 0.45 0.25 2.07 1.85 0.33 0.21 0.50 0.29 -0.33 -0.17 -0.15
7 -1 3 4 0 0.70 4.26 0.50 0.19 0.81 0.62 0.01 0.01 0.28 0.28 0.09 0.05 0.05 0.45 0.45 0.11 1.72 1.72 0.50 0.37 0.63 0.27 -0.35 0.00 -0.35
8 1 4 4 -1 0.70 4.26 0.19 0.05 0.50 0.45 0.00 0.02 0.19 0.29 0.08 0.01 0.10 0.36 0.53 0.11 1.72 1.65 0.37 0.26 0.50 0.24 -0.38 -0.17 -0.21
9 -1 4 5 0 0.70 4.26 0.50 0.19 0.81 0.62 0.00 0.00 0.23 0.23 0.07 0.02 0.02 0.48 0.48 0.04 1.59 1.59 0.50 0.39 0.61 0.23 -0.39 0.00 -0.39
10 1 5 5 -1 0.70 4.26 0.19 0.05 0.50 0.45 0.00 0.01 0.17 0.25 0.07 0.00 0.04 0.38 0.57 0.04 1.59 1.56 0.39 0.29 0.50 0.21 -0.41 -0.17 -0.24
11 -1 5 6 0 0.70 4.26 0.50 0.19 0.81 0.62 0.00 0.00 0.20 0.20 0.06 0.01 0.01 0.49 0.49 0.02 1.53 1.53 0.50 0.39 0.61 0.21 -0.41 0.00 -0.41
12 1 6 6 -1 0.70 4.26 0.19 0.05 0.50 0.45 0.00 0.00 0.15 0.22 0.06 0.00 0.02 0.39 0.59 0.02 1.53 1.52 0.39 0.30 0.50 0.20 -0.42 -0.17 -0.25
13 -1 6 7 0 0.70 4.26 0.50 0.19 0.81 0.62 0.00 0.00 0.18 0.18 0.05 0.00 0.00 0.50 0.50 0.01 1.51 1.51 0.50 0.40 0.60 0.20 -0.42 0.00 -0.42
14 1 7 7 -1 0.70 4.26 0.19 0.05 0.50 0.45 0.00 0.00 0.13 0.20 0.05 0.00 0.01 0.40 0.60 0.01 1.51 1.51 0.40 0.30 0.50 0.20 -0.42 -0.17 -0.25
15 -1 7 8 0 0.70 4.26 0.50 0.19 0.81 0.62 0.00 0.00 0.16 0.16 0.05 0.00 0.00 0.50 0.50 0.00 1.50 1.50 0.50 0.40 0.60 0.20 -0.42 0.00 -0.42
16 1 8 8 -1 0.70 4.26 0.19 0.05 0.50 0.45 0.00 0.00 0.12 0.18 0.04 0.00 0.00 0.40 0.60 0.00 1.50 1.50 0.40 0.31 0.50 0.19 -0.43 -0.17 -0.25
17 -1 8 9 0 0.70 4.26 0.50 0.19 0.81 0.62 0.00 0.00 0.14 0.14 0.04 0.00 0.00 0.50 0.50 0.00 1.50 1.50 0.50 0.40 0.60 0.20 -0.42 0.00 -0.42
18 1 9 9 -1 0.70 4.26 0.19 0.05 0.50 0.45 0.00 0.00 0.11 0.16 0.04 0.00 0.00 0.40 0.60 0.00 1.50 1.50 0.40 0.31 0.50 0.19 -0.43 -0.17 -0.26
19 -1 9 10 0 0.70 4.26 0.50 0.19 0.81 0.62 0.00 0.00 0.13 0.13 0.04 0.00 0.00 0.50 0.50 0.00 1.50 1.50 0.50 0.40 0.60 0.20 -0.42 0.00 -0.42
20 1 10 10 -1 0.70 4.26 0.19 0.05 0.50 0.45 0.00 0.00 0.10 0.15 0.04 0.00 0.00 0.40 0.60 0.00 1.50 1.50 0.40 0.31 0.50 0.19 -0.43 -0.17 -0.26
21 -1 10 11 0 0.70 4.26 0.50 0.19 0.81 0.62 0.00 0.00 0.12 0.12 0.04 0.00 0.00 0.50 0.50 0.00 1.50 1.50 0.50 0.40 0.60 0.20 -0.42 0.00 -0.42
22 1 11 11 -1 0.70 4.26 0.19 0.05 0.50 0.45 0.00 0.00 0.09 0.13 0.03 0.00 0.00 0.40 0.60 0.00 1.50 1.50 0.40 0.31 0.50 0.19 -0.43 -0.17 -0.26
23 -1 - - 0 0.70 4.26 0.50 0.19 0.81 0.62 0.00 0.00 0.11 0.11 0.03 0.00 0.00 0.50 0.50 0.00 1.50 1.50 0.50 0.40 0.60 0.20 -0.42 0.00 -0.42

pi_t B A S pi_t B A S
0.05 0.4705 0.5295 0.059 0.05 0.4705 0.5295 0.059
0.05 0.441205 0.5 0.058795 0.05 0.443761 0.5 0.056239
0.05 0.412313 0.4705 0.058187 0.094371 0.401719 0.494487275 0.092768
0.05 0.384013 0.441205 0.057192 0.171721 0.339843 0.488986945 0.149144
0.05 0.356477 0.412313 0.055836 0.292009 0.260937 0.483011037 0.222074
0.05 0.329859 0.384013 0.054154 0.450683 0.178594 0.476101904 0.297508
0.05 0.304288 0.356477 0.052189 0.620041 0.109542 0.467388269 0.357846
0.05 0.279872 0.329859 0.049987 0.764454 0.061723 0.455249657 0.393526
0.05 0.256692 0.304288 0.047596 0.865843 0.032901 0.436839889 0.403939
0.05 0.234806 0.279872 0.045066 0.92771 0.016978 0.407714248 0.390737
0.05 0.256692 0.304288 0.047596 0.113826 0.362528 0.464458835 0.101931
0.05 0.234806 0.279872 0.045066 0.203444 0.298557 0.458910657 0.160354
0.05 0.214248 0.256692 0.042444 0.336782 0.221555 0.452817915 0.231263
0.05 0.195031 0.234806 0.039775 0.502368 0.146433 0.445660404 0.299228
0.05 0.177149 0.214248 0.037099 0.667414 0.08727 0.436450069 0.34918
0.05 0.16058 0.195031 0.034451 0.799545 0.048218 0.423375568 0.375157
0.05 0.145287 0.177149 0.031862 0.887982 0.025402 0.403343378 0.377942
0.05 0.131222 0.16058 0.029358 0.94031 0.013023 0.371794829 0.358772
0.05 0.118331 0.145287 0.026956 0.969042 0.00658 0.323980964 0.317401
0.05 0.106551 0.131222 0.024672 0.984175 0.003299 0.259198854 0.255899
0.05 0.095816 0.118331 0.022515 0.991971 0.001648 0.185814178 0.184166
0.05 0.086058 0.106551 0.020492 0.995942 0.000822 0.118808176 0.117987
0.05 0.077209 0.095816 0.018606 0.997953 0.000409 0.069013548 0.068604

pi_t B A S pi_t B A S
0.05 0.4705 0.5295 0.059 0.05 0.4705 0.5295 0.059
0.05 0.441205 0.5 0.058795 0.05 0.443761319 0.5 0.056239
0.05 0.412313 0.4705 0.058187 0.094371 0.401718862 0.494487 0.092768

0.05 0.384013 0.441205 0.057192 0.171721 0.339842823 0.488987 0.149144
0.05 0.356477 0.412313 0.055836 0.292009 0.260936673 0.483011 0.222074
0.05 0.329859 0.384013 0.054154 0.450683 0.178593967 0.476102 0.297508
0.05 0.304288 0.356477 0.052189 0.620041 0.109541843 0.467388 0.357846
0.05 0.279872 0.329859 0.049987 0.764454 0.06172339 0.45525 0.393526
0.05 0.256692 0.304288 0.047596 0.865843 0.032900676 0.43684 0.403939
0.05 0.234806 0.279872 0.045066 0.92771 0.016977696 0.407714 0.390737
0.05 0.214248 0.256692 0.042444 0.962286 0.008607526 0.362528 0.353921
0.05 0.195031 0.234806 0.039775 0.980667 0.004323675 0.298557 0.294233
0.05 0.177149 0.214248 0.037099 0.99018 0.002161521 0.221555 0.219394
0.05 0.16058 0.195031 0.034451 0.995035 0.001077989 0.146433 0.145355
0.05 0.145287 0.177149 0.031862 0.997496 0.000536954 0.08727 0.086734
0.05 0.131222 0.16058 0.029358 0.998738 0.000267295 0.048218 0.047951
0.05 0.118331 0.145287 0.026956 0.999365 0.000133018 0.025402 0.025269
0.05 0.106551 0.131222 0.024672 0.99968 6.61853E-05 0.013023 0.012957
0.05 0.095816 0.118331 0.022515 0.999839 3.2929E-05 0.00658 0.006547
0.05 0.086058 0.106551 0.020492 0.999919 1.63824E-05 0.003299 0.003283
0.05 0.077209 0.095816 0.018606 0.999959 8.15022E-06 0.001648 0.00164
0.05 0.069202 0.086058 0.016857 0.999979 4.05467E-06 0.000822 0.000817
0.05 0.061969 0.077209 0.015241 0.99999 2.01716E-06 0.000409 0.000407

Scenario 1: Balanced order flow Scenario 2: Continuation of sell orders Scenario 3: Selling with a temporary reversal

Beliefs Quotes

Perfectly balanced Consecutive sells A reversal to restore liquidity
For these two plots alpha_H=0.99, alpha_l=0.01, p1=0.5, pi_1=0.05

BENCHMARK
BeliefsPr(h_t | state) Pr(state | h_t )

Liquidity Distortions
 Quotes 

COMPOSITION UNCERTAINTY

All sell one buy at t=10 to illustrate reversal restore liq. (extreme parameters)
Benchmark Extended

All sell to show destabilizing order imbalance (extreme parameters)
Benchmark Extended
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Figure 3. The dynamics of the market maker’s belief about the adverse selection, quotes and bid-ask spreads.
Panels (a1)-(a3) plot the market maker’s belief about the high informed trading, πt, quotes, and bid-ask spread in the benchmark and extended models in the face of 20 perfectly
balanced orders (i.e., a buy following a sell order). The parameter values for Panels (a1)-(a3) are αL = 0.2, αH = 0.8, and π1 = 0.7. Panels (b1)-(b3) plot the same variables in
the face of 20 consecutive sell orders (i.e., Nt = −20 at t = 21). Panels (c1)-(c3) plot the same variables in the face of 20 consecutive sell orders up to t = 21 with one reversal
(buy) at t=10. The parameter values for Panels (b1)-(b3) and (c1)-c(3) are αL = 0.01, αH = 0.99, and π1 = 0.05. Other parameter values are p1 = 0.5 and q = 1.
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Lastly, Panels (c1)-(c3) of Figure 3 illustrate the market maker’s belief about the high pro-

portion of informed traders, quotes, and spread during consecutive sell orders with a temporary

buy reversal. In the benchmark model without learning about the adverse selection, a reversal

in order flow makes the market less liquid as it increases uncertainty about the fundamental

value (i.e., ∆SVt > 0). In the presence of learning about the adverse selection, however, the

standard prediction is also not necessarily true since a temporary reversal can substantially de-

crease the market maker’s belief about the adverse selection, leading to downward pressure on

the bid-ask spread (i.e., ∆SAt < 0). When the gap between the low αL and high αH propor-

tion of informed traders is sufficiently high, the downward pressure due to learning about the

adverse selection ∆SAt dominates the upward pressure due to learning about the fundamental

value ∆SVt , leading to a liquidity improvement. The dominating downward revision about the

adverse selection (i.e., ∆SAt + ∆SVt < 0) and the resulting liquidity improvement is opposite

to what is predicted by the standard models. Panel (c1) of Figure 3 illustrates the reduction in

the market maker’s belief about the high proportion of informed traders during a reversal and

Panels (c2)-(c3) highlight a subsequent liquidity improvement.

5.2. Sharp price movements. In this subsection, we analyze the information content of trades

in the presence of learning about adverse selection and its role in contributing to sharp price

movements as another form of market instability. The main intuition that we want to rigorously

characterize is that when the market maker revises her perceived informativeness of order flow,

she gives more (resp. less) credit to past orders and prices adjust accordingly. This means when

the market maker is uncertain about the proportion of informed traders, an order impacts the

market maker’s beliefs about the future value of the security in two ways. The first is simply

that buys (resp. sells) increase the likelihood that the fundamental value is high (resp. low) (i.e.,

the standard price discovery effect). A second effect is that the market maker also updates her

belief about the informativeness of order flow and then uses this new belief to reassess what she

had learned from past order flow. We term the second effect “repricing history”.12

To disentangle the standard price discovery and repricing history effects, we contrast the ra-

tional market maker’s learning about the payoff with the learning of the myopic market maker
12 The term repricing history shouldn’t be confused by the fact that our notion of equilibrium requires that the
market maker does not regret ex-post for the trades that she is obliged to make as in the Glosten-Milgrom type
models. Moreover, the stochastic process (Nt, t) is Markov, meaning that the distribution of (Nt+1, t+1) depends
on only (Nt, t) and is independent of the history in our setting. This follows because the trades are independently
and identically distributed and (Nt, t) are counting processes for trades and time.
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that learns from order flow as if it is always the first order (myopically). We interpret the dif-

ference in the learning of the rational and myopic market makers about the fundamental value

of the security as repricing history effect. In essence, our task is to determine the components

of revision in belief about the security payoff (i.e., ∆pt = pt+1 − pt) when the rational market

maker learns about the payoff from pt to pt+1 with an order Dt. We are interested in the contri-

butions of the two components (standard price discovery and repricing history) of the rational

market maker’s learning about the payoff in the face of different order flow patterns. Various

contributors to the market maker’s learning about the payoff are useful in understanding large

and sharp price movements in financial markets. Formally, the rational market maker’s total

revision in belief about the security payoff at time t follows from Eqs. (21) and (22) as

∆pt = pt+1 − pt =


pt · (1− pt) ·

(
δbt − 1

)
1 + pt ·

(
δbt − 1

) , if Dt = +1,

pt · (1− pt) ·
(
(δst )

−1 − 1
)

1 + pt ·
(
(δst )

−1 − 1
) , if Dt = −1.

(46)

To characterize the standard price discovery component, consider a myopic market maker

who learns from each order as if it is always the first order (recall that initially nature indepen-

dently chooses α̂ and V̂ ). This means that she does not observe the history and only has poste-

rior beliefs about the payoff V̂ ∈ {0, 1} and the proportion of informed traders α̂ ∈ {αL, αH}.

Such a market maker learns from each order myopically (i.e., one step ahead) as if nature has

just independently chosen V̂ and α̂. By one step learning about the payoff as if it is the first

order, the myopic market maker does not reassess her prior learning about the payoff (i.e., the

information in past order flow). The next lemma characterizes the learning of the myopic mar-

ket maker without repricing history, where we carry the original notation with a superscript m

describing the myopic market maker.

Lemma 11. Let the informativeness of orders be δmt =
1+(πmt ·αH+(1−πmt )·αL)

1−(πmt ·αH+(1−πmt )·αL)
, where πmt is given

by

πmt =

(
1 + αH · (2 · pmt−1 − 1) ·Dt−1

)
· πmt−1(

1 +
(
πmt−1 · αH + (1− πmt−1) · αL

)
· (2 · pmt−1 − 1) ·Dt−1

) . (47)

Let the geometric mean of informativeness of orders be δ̄mt =

(∏t−1
i=1 δ

m
i

) 1
t−1

and weighted

order imbalance N̄t =
∑t−1

τ=1Dτ · wτ , where wτ = (t−1)·ln δmτ∑t−1
i=1 ln δmi

. Then the dynamics of the expec-

tations about the payoff satisfy
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pmt+1

1− pmt+1

=
pmt

1− pmt
· (δmt )Dt , (48)

and hence

pmt =
(δ̄mt )N̄t

1 + (δ̄mt )N̄t
. (49)

Lemma 11 shows that the myopic market maker (as in the benchmark and extended mod-

els) revises her belief upward (resp. downward) with a buy (resp. sell) order and the revision

is higher with high informativeness of orders δmt . Assuming independence between V̂ and α̂

reduces the learning of the rational market maker to that of the myopic market maker and fur-

ther assuming αL = αH reduces the myopic market maker’s learning to the learning in the

benchmark model. An interesting difference of the rational and the myopic market maker is

that the myopic market maker evaluates the information content of buy and sell orders at a

given point in time equally (footnote 9 shows how δbt and δst reduce to symmetric δmt ), imply-

ing that the repricing history effect causes asymmetric informativeness of orders (δbt and δst )

characterized in Proposition 5. The myopic market maker’s revision in belief about the payoff,

∆pmt = pmt+1 − pmt , at time t follows from Eq. (48) as

∆pmt =
pmt · (1− pmt ) ·

(
(δmt )Dt − 1

)
1 + pmt ·

(
(δmt )Dt − 1

) , (50)

where δmt is determined by πmt . The repricing history effect emerges from the difference be-

tween rational belief revision about the fundamental value by considering the whole order flow

history ∆pt and myopic learning with only the standard price discovery component ∆pmt , i.e.,

∆prt = ∆pt −∆pmt , (51)

where ∆prt stands for the repricing history. The repricing history effect has important implica-

tions for the dynamics of informativeness and price impacts of orders, and therefore for beliefs

about the fundamental value and prices, especially during highly unbalanced order flow.

First, it leads to asymmetric price reactions due to the differential information content of

orders (i.e., δbt 6= δst ). The asymmetry (δbt − δst ) is more pronounced during highly unbalanced

order flow. More precisely, as the amount of order imbalance increases the difference between

informativeness of buy and sell orders increases following Eqs. (18) and (19) (δbt > δst for
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negative and δst > δbt for positive imbalance).13 This is intuitive because a buy (resp. sell) order

during high sell (resp. buy) imbalance leads the market maker to learn that the past order flow

may not have been as informed, resulting in a quick reassessment of the prior learning about

the payoff. This means the reversal in order flow is more informative than the continuation in

order flow.14 These results are absent in the myopic market maker since she treats each order as

the first order (i.e., δbt = δst = δmt ) and the benchmark market maker with time-independent and

symmetric informativeness of orders (i.e., δbt = δst = δ).

Second, the repricing history effect causes accelerating price impacts when the market maker

receives continuation in order flow. Accelerating price impacts means the security price in-

creases or decreases at an increasing rate. Intuitively, in the presence of uncertainty about the

proportion of informed traders, a buy (resp. sell) after consecutive buys (resp. sells) not only

signals that the asset value is high (resp. low), but also signals that the previous buys (sells) are

more informed, leading to additional upward (resp. downward) revision in the market maker’s

belief about the fundamental value. The empirical literature mainly focuses on It = |∆pt|
pt

as a

proxy for the price impact. The price impact of a sell order at time t follows from Eq. (46) as

It =
|∆pt|
pt

=
(1− pt) ·

(
1− (δst )

−1
)

1 + pt ·
(
(δst )

−1 − 1
) , (52)

which reduces to

It =
1− (δst )

−1

1 +
∏t

i=1(δsi )
−1
, (53)

during consecutive sell orders. In the benchmark model, the price impact of an order Dt at

time t is given by It = |δDt−1|
δNt+1+1

, which always attenuates with order imbalance (i.e., It < It−1).

Unlike the benchmark model, Eq. (53) shows that the price impact can accelerate in our model

with the continuation in order flow. More precisely, the price impact accelerates It > It−1 if

and only if the informativeness of order is sufficiently large, i.e.,

δst > 1 +

(
δst−1 − 1

)
·
(∏t−1

i=1 δ
s
i + 1

)
δst−1 +

∏t−1
i=1 δ

s
i

. (54)

13 In fact, it is straightforward to show that limt→∞ δbt = 1+αL
1−αH and limt→∞ δst = 1+αH

1−αL , leading to the maximum

asymmetry δbt − δst =
α2
H−α

2
L

(1−αH)·(1−αL) when the market maker observes infinite sequences of sell orders. The result
is symmetric for an infinite sequence of buy orders.
14 Of course, there might be other explanations for why continuations and reversals in order flow have different
information content. For example, one obvious explanation might be the presence of history-dependent (e.g., pos-
itively correlated with the last trade) uninformed traders in the market so that the reversal is more likely associated
with informed trading (e.g., Easley, Kiefer and O’Hara (1997)). While history-dependent uninformed trading can
lead to the differential information content of continuations and reversals, it does not necessarily lead to the large
price swings that we explain with our model.
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This occurs because in the presence of uncertainty about the adverse selection, the price

impact decreases with the belief about the payoff pt as in the benchmark model (i.e., ∂It
∂pt

< 0),

but also increases with the informativeness of buy and sell orders (i.e., ∂It
∂δst

> 0 and ∂It
∂δbt

> 0 ).

Therefore, our model can explain accelerating price impacts similar to those observed during

flash crashes (e.g., CFTC-SEC (2010a)), whereas the benchmark model is always associated

with attenuating price impacts in response to order imbalance.

Sharp price movements in financial markets can arise as a consequence of these two ef-

fects (accelerating price impacts during continuations and more informative reversals) stem-

ming from the repricing history effect. Compared to the myopic and benchmark market makers,

the rational market maker in the presence of uncertainty about adverse selection learns faster

in response to continuation in order flow (order imbalance) due to accelerating price impacts

(It > It−1) and re-learns even faster in response to a reversal in order flow due to more infor-

mative reversals (δbt > δst during sell and δst > δbt during buy sequences). This generates a sharp

decline or rise followed by a quick reversal in price, such as the typical price path during a flash

crash or rally (e.g., CFTC (2010a, 2010b) and U.S. Dept. of the Treasury et al. (2014)).

We illustrate the implications of repricing history in Figure 4 by considering three order flow

patterns: consecutive buys in Panels (a1)-(a3), temporary sells with a subsequent reversal in

Panels (b1)-(b3), and consecutive buys with a temporary reversal in Panels (c1)-(c3). Panels

(a1) and (a2) of Figure 4 show that during the buying pressure, the rational market maker in

the presence of uncertainty about the adverse selection learns faster about the payoff and the

repricing history effect contributes to faster learning compared to the myopic and benchmark

market makers. Panel (a3) complements these findings by showing that the informativeness of

a buy order at time t, δbt , slightly increases compared to the initial informativeness δ1, which

stays at its initial level in the benchmark model. Intuitively, this is because with consecutive

buy orders the repricing history effect causes accelerating price impacts as the market maker

reassesses what can be learned from past buy orders, leading to faster learning. Panel (a3)

additionally shows that the asymmetry between the information content of buy and sell orders

increases with order imbalance. More precisely, it shows that the reversals (sells) become more

informative as the market maker receives continuation in order flow (buys).
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Independent
t D (Orders) b_t t-b_t N (Imbalance) Pr(h_t) s_1 s_2 s_3 s_4 s_5 s_6 s_7 s_8 Pr(h_t) s_1 s_2 s_3 s_4 s_5 s_6 s_7 s_8 Pr(h_t) s_1 s_2 s_3 s_4 s_5 s_6 s_7 s_8
0 1 1 0 1 0.05 1.00 1.13 0.50 0.47 0.53 0.06 - 0.03 0.00 0.48 0.00 0.03 0.00 0.48 0.00 1.13 0.05 1.00 1.13 1.13 0.50 0.47 0.53 0.06 - 0.03 0.00 0.48 0.00 0.03 0.00 0.48 0.00 0.05 1.00 1.13 1.13 0.50 0.47 0.53 0.06 - 0.03 0.00 0.48 0.00 0.03 0.00 0.48 0.00 0.05 1.00 1.13 1.13 0.50 0.47 0.53 0.06
1 1 2 0 2 0.05 1.00 1.13 0.53 0.50 0.56 0.06 0.50 0.05 0.00 0.48 0.00 0.00 0.00 0.47 0.00 1.13 0.05 1.00 1.11 1.13 0.53 0.50 0.56 0.06 0.50 0.03 0.00 0.50 0.00 0.02 0.00 0.45 0.00 0.05 1.00 1.13 1.13 0.53 0.50 0.56 0.06 0.50 0.05 0.00 0.48 0.00 0.00 0.00 0.47 0.00 0.05 1.00 1.11 1.13 0.53 0.50 0.56 0.06
2 1 3 0 3 0.05 1.00 1.13 0.56 0.53 0.59 0.06 0.26 0.09 0.00 0.46 0.00 0.00 0.00 0.44 0.00 1.23 0.09 1.00 1.19 1.23 0.56 0.51 0.60 0.09 0.25 0.03 0.00 0.53 0.00 0.02 0.00 0.42 0.00 0.05 1.00 1.13 1.13 0.56 0.53 0.59 0.06 0.26 0.09 0.00 0.46 0.00 0.00 0.00 0.44 0.00 0.09 1.00 1.19 1.23 0.56 0.51 0.60 0.09
3 1 4 0 4 0.05 1.00 1.13 0.59 0.56 0.62 0.06 0.14 0.17 0.00 0.43 0.00 0.00 0.00 0.40 0.00 1.43 0.17 1.00 1.30 1.43 0.60 0.51 0.66 0.15 0.13 0.03 0.00 0.56 0.00 0.02 0.00 0.39 0.00 0.05 1.00 1.13 1.13 0.59 0.56 0.62 0.06 0.14 0.17 0.00 0.43 0.00 0.00 0.00 0.40 0.00 0.17 1.00 1.30 1.43 0.60 0.51 0.66 0.15
4 1 5 0 5 0.05 1.00 1.13 0.62 0.59 0.64 0.06 0.08 0.29 0.00 0.37 0.00 0.00 0.00 0.34 0.00 1.84 0.29 1.00 1.46 1.81 0.66 0.52 0.74 0.22 0.06 0.03 0.00 0.59 0.00 0.02 0.00 0.36 0.00 0.05 1.00 1.13 1.13 0.62 0.59 0.64 0.06 0.08 0.29 0.00 0.37 0.00 0.00 0.00 0.34 0.00 0.29 1.00 1.46 1.81 0.66 0.52 0.74 0.22
5 1 6 0 6 0.05 1.00 1.13 0.64 0.62 0.67 0.05 0.05 0.45 0.00 0.29 0.00 0.00 0.00 0.26 0.00 2.65 0.45 1.00 1.62 2.57 0.74 0.52 0.82 0.30 0.03 0.03 0.00 0.61 0.00 0.02 0.00 0.34 0.00 0.05 1.00 1.13 1.13 0.64 0.62 0.67 0.05 0.05 0.45 0.00 0.29 0.00 0.00 0.00 0.26 0.00 0.45 1.00 1.62 2.57 0.74 0.52 0.82 0.30
6 1 7 0 7 0.05 1.00 1.13 0.67 0.64 0.70 0.05 0.04 0.62 0.00 0.20 0.00 0.00 0.00 0.18 0.00 4.23 0.62 1.00 1.77 4.04 0.82 0.53 0.89 0.36 0.02 0.03 0.00 0.64 0.00 0.02 0.00 0.31 0.00 0.05 1.00 1.13 1.13 0.67 0.64 0.70 0.05 0.04 0.62 0.00 0.20 0.00 0.00 0.00 0.18 0.00 0.62 1.00 1.77 4.04 0.82 0.53 0.89 0.36
7 1 8 0 8 0.05 1.00 1.13 0.70 0.67 0.72 0.05 0.03 0.76 0.00 0.13 0.00 0.00 0.00 0.11 0.00 7.30 0.76 1.00 1.87 6.79 0.89 0.54 0.94 0.39 0.01 0.03 0.00 0.66 0.00 0.02 0.00 0.29 0.00 0.05 1.00 1.13 1.13 0.70 0.67 0.72 0.05 0.03 0.76 0.00 0.13 0.00 0.00 0.00 0.11 0.00 0.76 1.00 1.87 6.79 0.89 0.54 0.94 0.39
8 1 9 0 9 0.05 1.00 1.13 0.72 0.70 0.74 0.05 0.03 0.87 0.00 0.07 0.00 0.00 0.00 0.06 0.00 13.14 0.87 1.00 1.93 11.79 0.94 0.56 0.97 0.40 0.00 0.04 0.00 0.68 0.00 0.01 0.00 0.27 0.00 0.05 1.00 1.13 1.13 0.72 0.70 0.74 0.05 0.03 0.87 0.00 0.07 0.00 0.00 0.00 0.06 0.00 0.87 1.00 1.93 11.79 0.94 0.56 0.97 0.40
9 -1 9 1 8 0.05 1.00 1.13 0.74 0.72 0.77 0.05 0.03 0.93 0.00 0.04 0.00 0.00 0.00 0.03 0.00 23.74 0.93 1.00 1.97 20.23 0.97 0.59 0.98 0.39 0.00 0.04 0.00 0.71 0.00 0.01 0.00 0.24 0.00 0.05 1.00 1.13 1.13 0.74 0.72 0.77 0.05 0.03 0.93 0.00 0.04 0.00 0.00 0.00 0.03 0.00 0.93 1.00 1.97 20.23 0.97 0.59 0.98 0.39

10 1 10 1 9 0.05 1.00 1.13 0.72 0.70 0.74 0.05 0.00 0.11 0.00 0.48 0.00 0.00 0.00 0.41 0.00 1.28 0.11 1.00 1.21 1.26 0.59 0.54 0.64 0.10 0.00 0.04 0.00 0.68 0.00 0.01 0.00 0.27 0.00 0.05 1.00 1.13 1.13 0.72 0.70 0.74 0.05 0.00 0.11 0.00 0.48 0.00 0.00 0.00 0.41 0.00 0.11 1.00 1.21 1.26 0.59 0.54 0.64 0.10
11 1 11 1 10 0.05 1.00 1.13 0.74 0.72 0.77 0.05 0.00 0.20 0.00 0.43 0.00 0.00 0.00 0.36 0.00 1.53 0.20 1.00 1.34 1.49 0.64 0.54 0.70 0.16 0.00 0.04 0.00 0.71 0.00 0.01 0.00 0.24 0.00 0.05 1.00 1.13 1.13 0.74 0.72 0.77 0.05 0.00 0.20 0.00 0.43 0.00 0.00 0.00 0.36 0.00 0.20 1.00 1.34 1.49 0.64 0.54 0.70 0.16
12 1 12 1 11 0.05 1.00 1.13 0.77 0.74 0.79 0.04 0.00 0.34 0.00 0.36 0.00 0.00 0.00 0.30 0.00 2.03 0.34 1.00 1.50 1.94 0.70 0.55 0.78 0.23 0.00 0.04 0.00 0.73 0.00 0.01 0.00 0.22 0.00 0.05 1.00 1.13 1.13 0.77 0.74 0.79 0.04 0.00 0.34 0.00 0.36 0.00 0.00 0.00 0.30 0.00 0.34 1.00 1.50 1.94 0.70 0.55 0.78 0.23
13 1 13 1 12 0.05 1.00 1.13 0.79 0.77 0.80 0.04 0.00 0.50 0.00 0.28 0.00 0.00 0.00 0.22 0.00 3.02 0.50 1.00 1.66 2.82 0.78 0.55 0.85 0.30 0.00 0.04 0.00 0.75 0.00 0.01 0.00 0.20 0.00 0.05 1.00 1.13 1.13 0.79 0.77 0.80 0.04 0.00 0.50 0.00 0.28 0.00 0.00 0.00 0.22 0.00 0.50 1.00 1.66 2.82 0.78 0.55 0.85 0.30
14 1 14 1 13 0.05 1.00 1.13 0.80 0.79 0.82 0.04 0.00 0.67 0.00 0.19 0.00 0.00 0.00 0.15 0.00 4.95 0.67 1.00 1.79 4.51 0.85 0.56 0.91 0.35 0.00 0.04 0.00 0.76 0.00 0.01 0.00 0.19 0.00 0.05 1.00 1.13 1.13 0.80 0.79 0.82 0.04 0.00 0.67 0.00 0.19 0.00 0.00 0.00 0.15 0.00 0.67 1.00 1.79 4.51 0.85 0.56 0.91 0.35
15 1 15 1 14 0.05 1.00 1.13 0.82 0.80 0.84 0.03 0.00 0.80 0.00 0.11 0.00 0.00 0.00 0.09 0.00 8.69 0.80 1.00 1.89 7.68 0.91 0.58 0.95 0.38 0.00 0.04 0.00 0.78 0.00 0.01 0.00 0.17 0.00 0.05 1.00 1.13 1.13 0.82 0.80 0.84 0.03 0.00 0.80 0.00 0.11 0.00 0.00 0.00 0.09 0.00 0.80 1.00 1.89 7.68 0.91 0.58 0.95 0.38
16 1 16 1 15 0.05 1.00 1.13 0.84 0.82 0.85 0.03 0.00 0.89 0.00 0.06 0.00 0.00 0.00 0.05 0.00 15.70 0.89 1.00 1.94 13.34 0.95 0.60 0.97 0.38 0.00 0.04 0.00 0.80 0.00 0.01 0.00 0.15 0.00 0.05 1.00 1.13 1.13 0.84 0.82 0.85 0.03 0.00 0.89 0.00 0.06 0.00 0.00 0.00 0.05 0.00 0.89 1.00 1.94 13.34 0.95 0.60 0.97 0.38
17 1 17 1 16 0.05 1.00 1.13 0.85 0.84 0.87 0.03 0.00 0.94 0.00 0.03 0.00 0.00 0.00 0.03 0.00 28.20 0.94 1.00 1.98 22.71 0.97 0.63 0.99 0.36 0.00 0.04 0.00 0.81 0.00 0.01 0.00 0.14 0.00 0.05 1.00 1.13 1.13 0.85 0.84 0.87 0.03 0.00 0.94 0.00 0.03 0.00 0.00 0.00 0.03 0.00 0.94 1.00 1.98 22.71 0.97 0.63 0.99 0.36
18 1 18 1 17 0.05 1.00 1.13 0.87 0.85 0.88 0.03 0.00 0.97 0.00 0.02 0.00 0.00 0.00 0.01 0.00 48.58 0.97 1.00 1.99 36.32 0.99 0.68 0.99 0.32 0.00 0.04 0.00 0.83 0.00 0.01 0.00 0.12 0.00 0.05 1.00 1.13 1.13 0.87 0.85 0.88 0.03 0.00 0.97 0.00 0.02 0.00 0.00 0.00 0.01 0.00 0.97 1.00 1.99 36.32 0.99 0.68 0.99 0.32
19 1 19 1 18 0.05 1.00 1.13 0.88 0.87 0.89 0.02 0.00 0.98 0.00 0.01 0.00 0.00 0.00 0.01 0.00 77.41 0.98 1.00 2.00 52.82 0.99 0.74 1.00 0.26 0.00 0.04 0.00 0.84 0.00 0.01 0.00 0.11 0.00 0.05 1.00 1.13 1.13 0.88 0.87 0.89 0.02 0.00 0.98 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.98 1.00 2.00 52.82 0.99 0.74 1.00 0.26
20 1 20 1 19 0.05 1.00 1.13 0.89 0.88 0.90 0.02 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 110.93 0.99 1.00 2.01 68.94 1.00 0.81 1.00 0.18 0.00 0.04 0.00 0.85 0.00 0.01 0.00 0.10 0.00 0.05 1.00 1.13 1.13 0.89 0.88 0.90 0.02 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99 1.00 2.01 68.94 1.00 0.81 1.00 0.18
21 1 21 1 20 0.05 1.00 1.13 0.90 0.89 0.91 0.02 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 142.10 1.00 1.00 2.01 81.68 1.00 0.88 1.00 0.12 0.00 0.05 0.00 0.86 0.00 0.00 0.00 0.09 0.00 0.05 1.00 1.13 1.13 0.90 0.89 0.91 0.02 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 2.01 81.68 1.00 0.88 1.00 0.12
22 - - - - 0.05 1.00 1.13 0.91 0.90 0.92 0.02 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 165.58 1.00 1.00 2.01 90.16 1.00 0.93 1.00 0.07 0.00 0.05 0.00 0.87 0.00 0.00 0.00 0.08 0.00 0.05 1.00 1.13 1.13 0.91 0.90 0.92 0.02 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 2.01 90.16 1.00 0.93 1.00 0.07

0.99
0.01

1
0.6
1

0.059

1 deltap_t myopic rational RH delta p t benchmark -1 1 -1 1) Delta delta 2) delta 3) delta
2 0.03 0.03 0.00 0.03 1 0.0590 0.0590 0.0590 0.0590 p_t p_t m p_t b p_t p_t m RH bench d lt t^ d lt t^b delta_t^s p_t p_t m p_t b p_t p_t m RH p_t p_t m p_t b p_t p_t m p_t b
3 0.03 0.03 0.00 0.03 2 0.0553 0.0557 0.0505 0.0557 0.50 0.50 0.50 0.03 0.03 0.00 1.13 1.13 1.13 1.13 0.5 0.5 0.5 -0.03 -0.03 0.00 1.1254 1.1254
4 0.03 0.04 0.01 0.03 3 0.0517 0.0524 0.0756 0.0912 0.53 0.53 0.53 0.03 0.03 0.00 1.13 1.13 1.11 1.13 0.4705 0.4705 0.4705 -0.03 -0.03 0.00 1.1254 1.1138
5 0.03 0.06 0.03 0.03 4 0.0482 0.0492 0.1034 0.1459 0.56 0.56 0.56 0.04 0.03 0.01 1.13 1.13 1.19 1.23 0.4438 0.4412 0.4412 -0.04 -0.03 -0.01 1.2261 1.1882
6 0.04 0.08 0.04 0.03 5 0.0447 0.0459 0.1195 0.2169 0.60 0.59 0.59 0.06 0.03 0.03 1.13 1.14 1.30 1.43 0.4017 0.411 0.4123 -0.06 -0.03 -0.03 1.4251 1.3043
7 0.04 0.08 0.04 0.03 6 0.0414 0.0428 0.1114 0.2911 0.66 0.62 0.62 0.08 0.04 0.04 1.13 1.17 1.46 1.81 0.3398 0.3788 0.384 -0.08 -0.04 -0.04 1.8149 1.4581
8 0.05 0.07 0.02 0.03 7 0.0382 0.0397 0.0841 0.3516 0.74 0.66 0.64 0.08 0.04 0.04 1.13 1.20 1.62 2.57 0.2609 0.3434 0.3565 -0.08 -0.04 -0.04 2.5739 1.6238
9 0.05 0.05 0.00 0.02 8 0.0351 0.0368 0.0537 0.3882 0.82 0.70 0.67 0.07 0.05 0.02 1.13 1.26 1.77 4.04 0.1786 0.3035 0.3299 -0.07 -0.05 -0.02 4.0361 1.7674

10 0.06 0.03 -0.03 0.02 9 0.0322 0.0339 0.0307 0.3998 0.89 0.74 0.70 0.05 0.05 0.00 1.13 1.35 1.87 6.79 0.1095 0.2577 0.3043 -0.05 -0.05 0.00 6.7934 1.87
11 -0.09 -0.37 -0.29 -0.02 10 0.0294 0.0312 0.0165 0.3876 0.94 0.79 0.72 0.03 0.06 -0.03 1.13 1.50 1.93 11.79 0.0617 0.2051 0.2799 -0.03 -0.06 0.03 11.792 1.9337
12 0.04 0.05 0.01 0.02 11 0.0322 0.0339 0.0763 0.0958 0.97 0.85 0.74 0.02 0.06 -0.04 1.13 1.77 1.97 20.23 0.0329 0.1469 0.2567 -0.02 -0.06 0.04 20.234 1.9698
13 0.04 0.06 0.02 0.02 12 0.0294 0.0312 0.1004 0.1512 0.98 0.91 0.77 0.01 0.05 -0.04 1.13 2.29 1.99 32.93 0.017 0.0885 0.2348 0.35 0.09 0.25 32.928 1.9892
14 0.05 0.08 0.03 0.02 13 0.0269 0.0286 0.1098 0.2199 0.99 0.96 0.79 0.00 0.03 -0.02 1.13 3.29 2.00 49.02 0.3625 0.1817 0.2567 0.10 0.04 0.06 1.4913 1.3361
15 0.05 0.08 0.03 0.02 14 0.0245 0.0262 0.0965 0.2879 1.00 0.99 0.80 0.00 0.01 -0.01 1.13 5.27 2.00 65.54 0.4589 0.2183 0.2799 0.01 0.02 -0.01 1.025 1.0249
16 0.03 0.06 0.03 0.02 15 0.0222 0.0239 0.0693 0.3398 1.00 1.00 0.82 0.00 0.00 0.00 1.13 9.12 2.01 79.20 0.465 0.2365 0.3043 0.00 0.01 -0.01 1.0203 1.0202
17 0.02 0.04 0.02 0.02 16 0.0201 0.0217 0.0428 0.3682 1.00 1.00 0.84 0.00 0.00 0.00 1.13 16.34 2.01 88.60 0.47 0.2471 0.3299 0.00 0.01 0.00 1.0202 1.0202
18 0.00 0.02 0.02 0.02 17 0.0182 0.0197 0.0240 0.3731 1.00 1.00 0.85 0.00 0.00 0.00 1.13 29.09 2.01 94.30 0.475 0.2543 0.3565 0.00 0.01 0.00 1.0202 1.0202
19 0.00 0.01 0.01 0.01 18 0.0165 0.0179 0.0127 0.3554 1.00 1.00 0.87 0.00 0.00 0.00 1.13 49.63 2.01 97.48 0.48 0.2599 0.384 0.00 0.00 0.00 1.0202 1.0202
20 0.00 0.01 0.01 0.01 19 0.0148 0.0162 0.0065 0.3151 1.00 1.00 0.88 0.00 0.00 0.00 1.13 78.37 2.01 99.18 0.485 0.2647 0.4123 0.00 0.00 0.00 1.0202 1.0202
21 0.00 0.00 0.00 0.01 20 0.0134 0.0146 0.0033 0.2543 1.00 1.00 0.89 0.00 0.00 0.00 1.13 111.53 2.01 100.07 0.49 0.2691 0.4412 0.00 0.00 0.00 1.0202 1.0202
22 0.00 0.00 0.00 0.01 21 0.0120 0.0132 0.0017 0.1831 1.00 1.00 0.90 0.00 0.00 0.00 1.13 142.26 2.01 100.53 0.495 0.2733 0.4705 0.01 0.00 0.00 1.0202 1.0202
23 0.00 0.00 0.00 0.01 22 0.0108 0.0119 0.0008 0.1174 1.00 1.00 0.91 0.00 0.00 0.00 1.13 165.47 2.01 100.76 0.5 0.2775 0.5 0.01 0.00 0.00 1.0202 1.0202

23 0.0097 0.0107 0.0004 0.0682 1.00 1.00 0.92 0.00 0.00 0.00 1.13 180.43 2.01 100.88 0.505 0.2816 0.5295 0.00 0.00 0.00 1.0202 1.0202
1.00 1.00 0.93 1.13 189.12 2.01 100.94 0.51 0.2857 0.5588 1.0202 1.0202
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Figure 4. The implications of repricing history effect.
Panels (a1)-(a3) plot the three market makers’ (rational, myopic and benchmark) beliefs about the payoff, pt, contribution of the repricing history effect, ∆prt , and informativeness
of buy and sell orders, δbt and δst , in the face of consecutive buy orders up to t = 21. Panels (b1)-(b3) plot the same variables in the face of consecutive sells up to t = 11 followed
by consecutive buys up to t = 21. Panels (c1)-(c3) plot the same variables in the face of consecutive buys up to t = 21 with one reversal (sell) at t = 10. The parameter values
are αH = 0.99, αL = 0.01, q = 1, p1 = 0.5, and π1 = 0.05.
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Panel (b1) shows that during consecutive sells followed by consecutive buys, the conditional

expected payoff pt declines faster for the same reason it occurs during consecutive buys and

reverses quickly due to more informative reversals (buys) illustrated in Panel (b3). Panel (b2)

highlights that the magnitude of repricing history effect in contributing the reassessment of the

market maker’s beliefs about the fundamental value can be substantial during the reversal in

order flow. The repricing history effect leads the informativeness of buy orders δbt to be greater

than informativeness of sell orders δst during the sell sequence. Thus, similar to flash crashes,

the repricing history effect can generate sharp crashes due to accelerating price impacts and

quick recoveries due to more informative reversals.

Finally, Panels (c1) and (c2) highlight the information content of one reversal (sell) during a

buy sequence. With one sell order at t = 10, the market maker reassesses what she had learnt

up to t = 10 by treating the previous buy orders as less informed than previously believed,

because the sell causes a downward revision in belief about the high proportion of informed

traders, whereas the benchmark market maker fails to take this into account and the myopic

market maker only does so without reassessment of the full order flow history. Additionally,

Panel (c3) illustrates that the informativeness of sell orders increases as the market maker faces

continuation in buy orders, which is symmetric to continuation in sell orders.

6. EMPIRICAL IMPLICATIONS

In this section, we discuss the empirical implications of our model.

6.1. Prevalence of flash crashes. Anecdotal evidence suggests that “mini flash crashes” driven

by large aggressive orders, e.g., intermarket sweep orders, occur nearly every day.15 Our model

offers two explanations for why this is the case. First, with the rise of algorithmic trading and

availability of market data, the financial market ecosystem has now dramatically changed.16

The composition of market participants has never been more complex and uncertain.17 The

technological developments have amplified the uncertainty in asymmetric information problem

of the modern liquidity providers. In our model, this corresponds to the gap between the low

15 Mini or micro flash crashes occur when a stock price spikes up or down in a small time frame. Nanex Research
offers exhaustive documentation of “mini flash crashes”: http://www.nanex.net/NxResearch/ResearchPage/3/.
16 See, for instance, “The big changes in US markets since Black Monday” (Financial Times, October 19, 2017),
“3 ways big data is changing financial trading” (Bloomberg, July 4, 2017).
17 The new era of data revolution stimulated some of the data analytics firms to enter into a hedge fund business
(e.g., Cargometrics). See, for instance, “When Silicon Valley came to Wall Street” (Financial Times, October 28,
2017), “Rise of quant: New hedge funds next year to embrace high tech” (Bloomberg, December 21, 2017).
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αL and the high αH probability of informed trading. Indeed, as the gap between αL and αH

increases our model shows that the market becomes more vulnerable to order imbalance and

the magnitude of the instability caused by order imbalance increases. Small order imbalances

with high composition uncertainty can lead to liquidity black holes, large price swings, elevated

volatility, and consequently, the prevalence of flash crashes.

A second reason is associated with the increased competition among liquidity providers as

a result of the proliferation of HFT and demise of the designated market makers. The current

market structure incentivizes learning about the time-varying adverse selection risk to ensure

spreads always reflect the level of toxicity. Therefore, efficient learning about the time-varying

level of adverse selection is crucial for a liquidity provider to remain competitive in today’s

major equity markets. These effects can also contribute to the increased prevalence of flash

crashes.

6.2. Model predictions. Our model makes a number of empirical predictions about the dy-

namics of prices, liquidity, and order flow. Some of these predictions provide a theoretical

explanation for results that have been reported in the empirical market microstructure literature.

Yet others are more nuanced empirical predictions that are yet to be tested, forming a foundation

for future empirical analysis. The most straightforward prediction of our model is that during

the selling (resp. buying) pressure the bid (resp. ask) moves faster than the ask (resp. bid), and

therefore, liquidity evaporates (this effect is not possible in the benchmark model because sells

during sell imbalance always impact the ask more than the bid and vice versa). This finding is

consistent with the empirical results of Engle and Patton (2004) who find that sells impact the

bid more than the ask, which stands in contrast to the theoretical results of Glosten and Milgrom

(1985). Our model shows that this occurs because of the market maker’s learning about toxicity

(adverse selection) from order flow. A cursory examination of the transactions data series of

E-mini and SPY (S&P 500 ETF) confirms that the same phenomenon was present during the

May 2010 Flash Crash. Second, the increasing informativeness of orders and wider spreads in

response to order imbalances imply that the trades that arrive when the spread is wide have a

greater price impact. This is consistent with Hasbrouck (1991), who finds that trades that occur

in the face of wider spreads have a larger price impact than those that occur when the spreads

are narrow.
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Our model also develops several other empirical implications about the dynamics of spreads,

informativeness, and price impacts of trades during various order flow patterns. The model

predicts that liquidity can improve during balanced orders and reversals in order flow due to

learning about the adverse selection. While these results are intuitive in the presence of learn-

ing about the adverse selection, both are opposite to what is predicted by standard market

microstructure models. In addition, the informativeness and price impacts of trades are time

varying and asymmetric due to learning about the adverse selection. The model predicts that

the asymmetry in price impacts of buy and sell orders increases (resp. decreases) as order

imbalance increases (resp. decreases).

In our model, accelerating price impacts and more informative reversals during unbalanced

order flow naturally arise due to the repricing history effect. Engle and Patton (2004) find strong

evidence on the differential impacts of buy and sell orders on the bid and ask prices. They in-

terpret the result with potentially multiple information events per day. Our model shows that

uncertainty about the proportion of informed traders, the quality of their signals, multidimen-

sional learning, and consequently, the repricing history effect are what drive this asymmetry.

The accelerating price impact and more informative reversals due to the repricing history effect

can generate a security price dynamics similar to flash crashes.

Overall, our results suggest that financial markets are more susceptible to instability in re-

sponse to order imbalance in times when adverse selection is believed to be low and can digest

more imbalance in times when adverse selection is high. This follows because order imbalance

destabilizes the market when the initial belief about the adverse selection is sufficiently low,

which we also show occurs after balanced order flow.

7. MODEL DISCUSSION AND EXTENSIONS

In this paper, we use a simple sequential trading model in the sense of Glosten and Milgrom

(1985) to provide intuition about the destabilizing role of order imbalances in financial markets

and the occurrences of financial crashes in the absence of the fundamental news about the se-

curity value. An interesting question is how sensitive our results are to our modeling approach.

In this section, we address this by considering how some extensions and generalizations of our

model affect the results.
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7.1. Other sources of uncertainty about adverse selection. The model presented thus far

incorporates uncertainty about the proportion of informed traders and the security payoff. Al-

lowing uncertainty in the other dimension of adverse selection problem complicates the nota-

tion, but does not affect our results. For example, in Appendix A, we allow the market maker

to be uncertain about the different combinations of uncertainties in the proportion of informed

traders, the quality of their private information, and the security payoff. We show that while

the magnitude of market instability may change, the main qualitative results of our model are

robust.

7.2. Endogenous uninformed trading. For convenience, we assumed that the motivation for

uninformed trading is exogenous. There may be other uninformed traders whose demands re-

flect more complex motivations resulting in distributions of private valuations that drive their

trading decisions (e.g., Easley et al. (1997), Glosten and Putnins (2016)). In fact, if uninformed

traders have elastic demands sensitive to trading costs, the destabilizing effects of order im-

balances are also amplified. To see this, suppose there are uninformed traders who have a

distribution of private values and there is occasionally a highly impatient trader that is either an

informed trader or a distressed uninformed trader (one that has a private valuation very far from

the current price). In normal conditions, when the spread is tight, the market maker receives

some order flow from the uninformed traders (balanced) and some of the imbalance from the

informed or distressed uninformed traders. If the imbalance is sufficiently strong (that is, the

desperate or highly informed trader hits the market too aggressively), the change in quotes is

sufficiently large (due to updating beliefs about the probability of informed trading). This scares

off most of the uninformed traders and makes the order flow even more unbalanced, causing a

feedback loop that can amplify the destabilizing effects of order imbalance. Thus our modeling

of uninformed traders as exogenous and insensitive to the cost of trading is conservative in that

it understates the severity of the impact of order imbalance.

8. CONCLUSION

With increasing competition between liquidity providers (e.g., due to endogenous liquidity

providers) and the use of algorithms in trading, market participants learn not only about the

fundamental values of assets, but also other characteristics of markets that are important for
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extracting information from order flow, such as the degree of adverse selection. Such multidi-

mensional learning can have very different implications for trading behavior, market liquidity,

and stability compared to learning only about the fundamental values of assets. In this paper,

we explore the effects of order imbalance when liquidity providers learn not only about the

fundamental value of the asset, as in the standard market microstructure models, but also about

the proportion of informed traders and the quality of their information. The multidimensional

learning explains a variety of empirical regularities not captured by the standard asymmetric

information models of market microstructure theory.

Our theoretical model with additional learning about the toxicity of order flow shows the

potentially destabilizing effects of order imbalance. We show that order imbalance can have a

stabilizing effect on the market by narrowing the spread because it reduces uncertainty about the

fundamental value and destabilizes the market by widening the spread because it increases belief

about the high adverse selection risk. The destabilizing effect of order imbalance dominates its

stabilizing effect when the initial belief about the adverse selection is sufficiently low. This

means financial markets become more susceptible to imbalance-induced instability when the

past order flow is more balanced. Put differently, in our setting, it is the order imbalance during

stability that leads to instability.

In addition to the sudden liquidity dry-ups, order imbalance can also naturally lead to a sharp

price decline and a quick recovery similar to flash crashes due to the “repricing history” effect.

We show that a sharp price decline occurs due to accelerating price impacts with continuations

in order flow and a quick recovery occurs due to more informative reversals in order flow,

both stemming from the “repricing history” effect. Overall, our model provides a theoretical

framework for further empirical work characterizing the dynamics of order flow, liquidity, and

prices.
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APPENDIX A: EXTENSION TO MULTIPLE DIMENSIONS OF UNCERTAINTY

In this Appendix, we extend our model to allow the market maker to be uncertain about the

security payoff, proportion of informed traders, and quality of informed traders’ information.

8.1. Uncertainty about the proportion of informed traders and quality of their signals.

Similar to Section 4, we assume that the probability of informed trading takes either low or

high values from the set α̂ ∈ {αL, αH} with an initial prior probability of Pr(α̂ = αH) = π1,

where 0 < αL < αH < 1 and 0 < π1 < 1. In addition, to extend our results to additional

uncertainty about the quality of informed traders’ information, we assume that the quality of

their signals takes either low or high values from the set q̂ ∈ {qL, qH} with an initial probability

of Pr(q̂ = qH) = ρ1, where 0.5 < qL < qH ≤ 1 and 0 < ρ1 < 1. We denote the market

maker’s belief about the high probability of informed trading conditional on the trading history

as πt = Pr{α̂ = αH |ht} and the informed traders having high-quality private information

conditional on the trading history as ρt = Pr{q̂ = qH |ht}. With two possible values for the

future security payoff, probability of informed trading, and quality of their private information

(i.e., α̂ ∈ {αL, αH}, q̂ ∈ {qL, qH}, V̂ ∈ {0, 1}), there are 8 possible disjoint states in this

model. Denote the states S ∈ {s1, s2, s3, s4, s5, s6, s7, s8}, where

s1 = {α̂ = αH , q̂ = qH , V̂ = 1}, s2 = {α̂ = αH , q̂ = qL, V̂ = 1},

s3 = {α̂ = αL, q̂ = qH , V̂ = 1}, s4 = {α̂ = αL, q̂ = qL, V̂ = 1},

s5 = {α̂ = αH , q̂ = qH , V̂ = 0}, s6 = {α̂ = αH , q̂ = qL, V̂ = 0},

s7 = {α̂ = αL, q̂ = qH , V̂ = 0}, s8 = {α̂ = αL, q̂ = qL, V̂ = 0}.

(A-1)

The market maker’s beliefs about the future security payoff, proportion of informed traders, and

quality of their signals follow from Eq. (A-1), respectively, as

pt = Pr(V̂ = 1|ht) = Pr(s1|ht) + Pr(s2|ht) + Pr(s3|ht) + Pr(s4|ht), (A-2)

πt = Pr(α̂ = αH |ht) = Pr(s1|ht) + Pr(s2|ht) + Pr(s5|ht) + Pr(s6|ht), (A-3)

ρt = Pr(q̂ = qH |ht) = Pr(s1|ht) + Pr(s3|ht) + Pr(s5|ht) + Pr(s7|ht). (A-4)

The concept of equilibrium is the same as Definition 1. The next proposition characterizes

the equilibrium quotes and bid-ask spread in the presence of multiple dimensions of uncertainty.
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Proposition A1. The equilibrium bid and ask prices in the presence of multidimensional uncertainty (i.e., future security payoff, proportion of

informed traders, and quality of their signals) are respectively given by

Bα,t =
pt

pt + δst · (1− pt)
, and Aα,t =

pt

pt + (δbt )
−1 · (1− pt)

, (A-5)

and the bid-ask spread is given by

Sα,t =
pt · (1− pt) · (δst − (δbt )

−1)(
pt + δst · (1− pt)

)
·
(
pt + (δbt )

−1 · (1− pt)
) , (A-6)

where

δbt =
(1 + αH(2qH − 1)) · Pr(s1|ht) + (1 + αH(2qL − 1)) · Pr(s2|ht) + (1 + αL(2qH − 1)) · Pr(s3|ht) + (1 + αL(2qL − 1)) · Pr(s4|ht)
(1− αH(2qH − 1)) · Pr(s5|ht) + (1− αH(2qL − 1)) · Pr(s6|ht) + (1− αL(2qH − 1)) · Pr(s7|ht) + (1− αL(2qL − 1)) · Pr(s8|ht)

·
(

1− pt
pt

)
, (A-7)

and

δst =
(1 + αH(2qH − 1)) · Pr(s5|ht) + (1 + αH(2qL − 1)) · Pr(s6|ht) + (1 + αL(2qH − 1)) · Pr(s7|ht) + (1 + αL(2qL − 1)) · Pr(s8|ht)
(1− αH(2qH − 1)) · Pr(s1|ht) + (1− αH(2qL − 1)) · Pr(s2|ht) + (1− αL(2qH − 1)) · Pr(s3|ht) + (1− αL(2qL − 1)) · Pr(s4|ht)

·
(

pt
1− pt

)
, (A-8)

show the informativeness of buy and sell orders respectively. In addition, δbt and δst are always greater than unity and increase with the proportions

of informed trading αL and αH , and the qualities of the informed traders’ signals qL and qH .

Proof. The proof follows similar to the proof of Proposition 5 (see Appendix B). The difference is to recognize that

Bα,t = Pr(V̂ = 1|ht, Dt = −1) = Pr(s1|ht, Dt = −1) + Pr(s2|ht, Dt = −1) + Pr(s3|ht, Dt = −1) + Pr(s4|ht, Dt = −1), (A-9)

Aα,t = Pr(V̂ = 1|ht, Dt = −1) = Pr(s1|ht, Dt = +1) + Pr(s2|ht, Dt = +1) + Pr(s3|ht, Dt = +1) + Pr(s4|ht, Dt = +1), (A-10)

which follow from the straightforward application of Bayes’ rule, i.e., Pr(s1|ht, Dt = −1) = Pr(Dt=−1|s1)∑
si∈S

Pr(Dt=−1|si)·Pr(si|ht) · Pr(s1|ht), with the similar

rules for the other states. The results follow once the probabilities of buy (Dt = +1) and sell (Dt = −1) orders in each state are calculated as

Pr(Dt|s1) =
1 + αH(2qH − 1) ·Dt

2
, Pr(Dt|s2) =

1 + αH(2qL − 1) ·Dt

2
, Pr(Dt|s3) =

1 + αL(2qH − 1) ·Dt

2
, Pr(Dt|s4) =

1 + αL(2qL − 1) ·Dt

2
,

Pr(Dt|s5) =
1− αH(2qH − 1) ·Dt

2
, Pr(Dt|s6) =

1− αH(2qL − 1) ·Dt

2
, Pr(Dt|s7) =

1− αL(2qH − 1) ·Dt

2
, Pr(Dt|s8) =

1− αL(2qL − 1) ·Dt

2
.

(A-11)

�
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Proposition A1 maintains the forms of the bid and ask in the benchmark and extended models

with composition uncertainty (see Propositions 2 and 5). The only difference in this Appendix

is that uncertainty about the quality of informed traders’ information and the market maker’s

learning about it also affect the informativeness of orders, δbt and δst , and consequently, the

quotes and spread. One way to see the direct impact of uncertainty about the quality of traders’

signals is to consider a myopic market maker, which leads to the symmetric information content

of a buy and a sell

δbt = δst =

1 +

(
πt · αH + (1− πt) · αL

)
·
(

2 ·
(
ρt · qH + (1− ρt) · qL

)
− 1

)
1−
(
πt · αH + (1− πt) · αL

)
·
(

2 ·
(
ρt · qH + (1− ρt) · qL

)
− 1

) . (A-12)

Eq. (A-12) shows that the increase in ρt implies a higher adverse selection risk for the market

maker, leading to a wider bid-ask spread. As Proposition A1 maintains the forms of bid and ask

quotes, by the similar arguments, the dynamics of belief about the payoff, pt, after each order

Dt and for the sequences of buy or sell orders follow the same way outlined in Lemma 6 and

Corollary 9, respectively. In addition, the market maker’s learning about uncertainties follows

analogous to Corollary 8.

Proposition A2. In the presence of multidimensional uncertainty (i.e., future security payoff,

proportion of informed traders, and quality of their signals);

(i) the market maker observing balanced order flows (i.e., Nt = 0 at time t) learns nothing

about the security payoff (i.e., pt = p1), but revises her beliefs about the high informed

trading and the informed traders having high-quality information downward (i.e., πt <

π1, ρt < ρ1).

(ii) the market maker observing sequences of buy or sell orders (i.e., Nt = t − 1 or Nt =

−(t−1) at time t ) revises her beliefs about the high informed trading and the informed

traders having high-quality information upward (i.e., πt > π1, ρt > ρ1).

We now turn our attention to how beliefs about the future security payoff, proportion of

informed traders, and quality of their signals evolve when there are sequences of buy and sell

orders and their effects on the quotes and spread. Figures 5 and 6 illustrate the results in the

presence of consecutive sell and buy orders, respectively. Panels (a)-(c) of the figures show that

beliefs about the high informed trading and high-quality signals are revised upward stronger in
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the presence of multiple sources of uncertainty. The stronger upward revisions of beliefs about

the high informed trading and high-quality signals result in high informativeness of orders,

leading to a wider bid-ask spread first, but at the same time faster convergence due to faster

learning about the payoff. Panels (d)-(f) are consistent with the practice that the destabilizing

role of order imbalances is stronger in the presence of multiple dimensions of uncertainty about

the adverse selection.
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(d) 

Figure 5. The dynamics of beliefs, quotes and bid-ask spread during the sequences of sell orders.
Panel (a) plots the market maker’s belief about the payoff, pt, (b) plots belief about the high informed trading, πt, (c) plots belief about the informed traders having high quality
information, ρt, (d) plots bid, Bt, (e) plots ask, At, and (f) plots bid-ask spread St in the face of 20 consecutive sell orders (i.e., Nt = −20 at t = 21). The parameter values are
αH = 0.99, αL = 0.01, qH = 1, qL = 0.6, p1 = 0.5, π1 = 0.1, and ρ1 = 0.3.
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Figure 6. The dynamics of beliefs, quotes and bid-ask spread during the sequences of buy orders.
Panel (a) plots the market maker’s belief about the payoff, pt, (b) plots belief about the high informed trading, πt, (c) plots belief about the informed traders having high quality
information, ρt, (d) plots bid, Bt, (e) plots ask, At, and (f) plots bid-ask spread St in the face of 20 consecutive buy orders (i.e., Nt = 20 at t = 21). The parameter values are
αH = 0.99, αL = 0.01, qH = 1, qL = 0.6, p1 = 0.5, π1 = 0.1, and ρ1 = 0.3.
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APPENDIX B: PROOFS

Proof of Proposition 2. The following expressions follow from Bayes’ theorem.

Pr{Dt = +1|V̂ = 1, ht} =
1 + α · (2 · q − 1)

2
; (B-1)

Pr{Dt = −1|V̂ = 1, ht} =
1− α · (2 · q − 1)

2
; (B-2)

Pr{Dt = +1|ht} =
1 + α · (2 · pt − 1) · (2 · q − 1)

2
; (B-3)

Pr{Dt = −1|ht} =
1 + α · (1− 2 · pt) · (2 · q − 1)

2
. (B-4)

From conditions (1) and (3) of Definition 1 (i.e., the zero-expected-profit and Bayesian condi-

tions) the bid and ask prices follow, respectively, as

Bt = E[V̂ = 1|ht, Dt = −1] = Pr{V = 1|ht}︸ ︷︷ ︸
pt

·Pr{Dt = −1|V̂ = 1, ht}
Pr{Dt = −1|ht}

, (B-5)

At = E[V̂ = 1|ht, Dt = +1] = Pr{V = 1|ht} ·
Pr{Dt = +1|V̂ = 1, ht}

Pr{Dt = +1|ht}
. (B-6)

Substituting Eqs. (B-2) and (B-4) into Eq. (B-5) and Eqs. (B-1) and (B-3) into Eq. (B-6),

defining

δ =
1 + α · (2 · q − 1)

1− α · (2 · q − 1)
> 1, (B-7)

for q ∈ (1/2, 1] and α ∈ (0, 1) and rearranging yields

Bt =
pt

pt + δ · (1− pt)
, (B-8)

At =
pt

pt + δ−1 · (1− pt)
. (B-9)

The bid-ask spread St follows from the difference of the ask in Eq. (B-9) and the bid in Eq.

(B-8) as

St =
pt · (1− pt) · (δ − δ−1)(

pt + δ · (1− pt)
)
·
(
pt + δ−1 · (1− pt)

) . (B-10)

Finally, differentiating Eq. (B-7) with respect to (w.r.t.) α and q obtains

∂δ

∂α
=

2 · (2 · q − 1)(
1− α · (2 · q − 1)

)2 > 0 and
∂δ

∂q
=

4 · α(
1− α · (2 · q − 1)

)2 > 0 (B-11)

for q ∈ (1/2, 1] and α ∈ (0, 1).

�
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Proof of Lemma 3. Rearranging Eqs. (B-8) and (B-9) obtains

Bt

1−Bt

= δ−1 · pt
1− pt

, (B-12)

At
1− At

= δ · pt
1− pt

. (B-13)

Since pt+1 = Et+1[V̂ |ht, Dt] is Bt if Dt = −1 and At if Dt = 1, it follows that

pt+1

1− pt+1

=


Bt

1−Bt

, if Dt = −1,

At
1− At

, if Dt = +1.

(B-14)

Therefore,
pt+1

1− pt+1

= δDt · pt
1− pt

. (B-15)

Iterating from the first trade at t = 1 yields

pt
1− pt

=

(
p1

1− p1

)
· δ(D1+...+Dt−1) =

(
p1

1− p1

)
· δNt , (B-16)

where p1 is the initial prior probability and Nt is the order imbalance up to (but not including)

the trade at time t. Solving Eq. (B-16) for pt obtains

pt =
p1 · δNt

1 + p1 · (δNt − 1)
, (B-17)

and inserting the initial prior probability p1 = 0.5 into Eq. (B-17) obtains

pt =
δNt

1 + δNt
. (B-18)

�

Proof of Corollary 4. (i) pt = p1 follows immediately from substituting Nt = 0 into Eq.

(B-17). (ii) follows from the partial derivative of Eq. (B-17) w.r.t. Nt,

∂pt
∂Nt

=
δNt · (ln δ) · p1 · (1− p1)(

1 + p1 · (δNt − 1)
)2 > 0, (B-19)

which shows that pt increases with positive order imbalance and decreases with negative order

imbalance. In addition, the magnitude of increase or decrease is higher with more informative
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trades following
∂pt
∂δ

=
Nt · δNt−1 · p1 · (1− p1)(

1 + p1 · (δNt − 1)
)2 , (B-20)

which is greater than 0 for Nt > 0 and less than 0 for Nt < 0.

(iii) Substituting Eq. (B-17) into Eq. (B-10), we obtain

St =
δNt · (δ − δ−1) · p1 · (1− p1)(

p1 · δNt + δ · (1− p1)
)
·
(
p1 · δNt + δ−1 · (1− p1)

) . (B-21)

It follows from Eq. (B-21) that at t = 1, the spread is given by

S1 =
(δ − δ−1) · p1 · (1− p1)(

p1 + δ · (1− p1)
)
·
(
p1 + δ−1 · (1− p1)

) . (B-22)

Multiplying and dividing the right hand side of Eq. (B-21) with Eq. (B-22) yields

St = S1 ·
(
p1 + δ · (1− p1)

)
·
(
p1 + δ−1 · (1− p1)

)
· δNt(

p1 · δNt + δ · (1− p1)
)
·
(
p1 · δNt + δ−1 · (1− p1)

) . (B-23)

St = S1 then follows from Eq. (B-23) when Nt = 0. When p1 = 0.5, S1 = δ−1
δ+1

, which turns

out to be the maximum spread since

∂St
∂Nt

=
(δ − δ−1) · δNt · (ln δ) · (1− δ2·Nt)(

(δNt + δ) · (δNt + δ−1)

)2 = 0, (B-24)

and ∂2St
∂N2

t
< 0 when Nt = 0.

(iv) follows from Eq. (B-24) that ∂St
∂Nt

< 0 if Nt > 0 and ∂St
∂Nt

> 0 if Nt < 0, which shows that

the spread narrows with order imbalance. Finally, the spread converges to zero as order imbal-

ance goes to infinity following limNt→+∞
δNt ·(δ−δ−1)

(δNt+δ)·(δNt+δ−1)
= limNt→+∞

(δ−δ−1)(
δNt+δ−Nt+δ+δ−1

) = 0

and limNt→−∞
δNt ·(δ−δ−1)

(δNt+δ)·(δNt+δ−1)
= limNt→−∞

δNt ·(δ−δ−1)(
δ2·Nt+δNt−1+δNt+1+1

) = 0 since δ > 1.

�

Proof of Proposition 5. In the presence of composition uncertainty, the probability of an order

Dt in each state is given by

Pr(Dt|s1) =
1 + αH ·Dt

2
, Pr(Dt|s2) =

1− αH ·Dt

2
,

Pr(Dt|s3) =
1 + αL ·Dt

2
, Pr(Dt|s4) =

1− αL ·Dt

2
,

(B-25)
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and the probability of an order Dt conditional on the trading history ht is given by

Pr(Dt|ht) =
∑
si∈S

Pr(Dt|si) · Pr(si|ht), i = 1, 2, 3, 4. (B-26)

The bid and ask quotes respectively follow as

Bα,t = E[V̂ = 1|ht, Dt = −1] = Pr(V̂ = 1|ht, Dt = −1)

= Pr{s1|ht, Dt = −1}+ Pr{s3|ht, Dt = −1}

=
Pr(Dt = −1|s1, ht)

Pr(Dt = −1|ht)
· Pr(s1|ht) +

Pr(Dt = −1|s3, ht)

Pr(Dt = −1|ht)
· Pr(s3|ht),

(B-27)

Aα,t = E[V̂ = 1|ht, Dt = 1] = Pr(V̂ = 1|ht, Dt = 1)

= Pr{s1|ht, Dt = 1}+ Pr{s3|ht, Dt = 1}

=
Pr(Dt = 1|s1, ht)

Pr(Dt = 1|ht)
· Pr(s1|ht) +

Pr(Dt = 1|s3, ht)

Pr(Dt = 1|ht)
· Pr(s3|ht).

(B-28)

Substituting Eqs. (B-25) and (B-26) into Eqs. (B-27) and (B-28), defining

δbt =

(
(1 + αH) · Pr(s1|ht) + (1 + αL) · Pr(s3|ht)
(1− αH) · Pr(s2|ht) + (1− αl) · Pr(s4|ht)

)
·
(

1− pt
pt

)
> 1, (B-29)

δst =

(
(1 + αH) · Pr(s2|ht) + (1 + αL) · Pr(s4|ht)
(1− αH) · Pr(s1|ht) + (1− αl) · Pr(s3|ht)

)
·
(

pt
1− pt

)
> 1, (B-30)

for 0 < αL < αH < 1 and rearranging yields

Bα,t =
pt

pt + δst · (1− pt)
, (B-31)

Aα,t =
pt

pt + (δbt )
−1 · (1− pt)

, (B-32)

Sα,t =
pt · (1− pt) · (δst − (δbt )

−1)(
pt + δst · (1− pt)

)
·
(
pt + (δbt )

−1 · (1− pt)
) . (B-33)

Finally, partial derivatives of δbt and δst w.r.t. αL and αH (i.e., ∂δbt
∂αL

> 0, ∂δbt
∂αH

> 0, ∂δst
∂αL

> 0

and ∂δst
∂αL

> 0 ) complete the proof.

�

Proof of Lemma 6. Rearranging Eqs. (B-31) and (B-32) obtains

Bα,t

1−Bα,t

= (δst )
−1 · pt

1− pt
, (B-34)

Aα,t
1− Aα,t

= δbt ·
pt

1− pt
. (B-35)
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Analogous to the benchmark model, in the presence of composition uncertainty, the current

belief about the payoff is the last transaction price leading to

pt+1

1− pt+1
=

pt
1− pt

· (δbt ), if Dt = +1, (B-36)

pt+1

1− pt+1
=

pt
1− pt

· (δst )−1, if Dt = −1. (B-37)

�

Proof of Proposition 7. Given the trading history ht with bt buy and st number of sell orders

at time t, the market maker’s belief about the payoff pt and the proportion of high informed

trading πt respectively follow from Bayes theorem as

pt = Pr(s1|ht) + Pr(s3|ht)

=

(
p1 · π1 ·

(
1 + αH

)bt · (1− αH)st + p1 · (1− π1) ·
(
1 + αL

)bt · (1− αL)st)·(
p1 · π1 · (1 + αH)bt · (1− αH)st + (1− p1) · π1 · (1− αH)bt · (1 + αH)st

+ p1 · (1− π1) · (1 + αL)bt · (1− αL)st + (1− p1) · (1− π1) · (1− αL)bt · (1 + αL)st
)−1

,

(B-38)

πt = Pr(s1|ht) + Pr(s2|ht)

=

(
p1 · π1 ·

(
1 + αH

)bt · (1− αH)st + (1− p1) · π1 ·
(
1− αH

)bt · (1 + αH
)st)·(

p1 · π1 · (1 + αH)bt · (1− αH)st + (1− p1) · π1 · (1− αH)bt · (1 + αH)st

+ p1 · (1− π1) · (1 + αL)bt · (1− αL)st + (1− p1) · (1− π1) · (1− αL)bt · (1 + αL)st
)−1

,

(B-39)

where bt = (t−1)+Nt
2

and st = (t−1)−Nt
2

.

(i) Substituting bt = st into Eq. (B-38) obtains pt = p1 and taking partial derivative of Eq.

(B-38) w.r.t. Nt after inserting bt = (t−1)+Nt
2

and st = (t−1)−Nt
2

obtains ∂pt
Nt

> 0.

(ii) Similarly, inserting bt = (t−1)+Nt
2

and st = (t−1)−Nt
2

into Eq. (B-39) and taking partial

derivative w.r.t. Nt obtains ∂πt
Nt

> 0 whenNt > 0 and ∂πt
Nt

< 0 whenNt < 0, leading to ∂πt
|Nt| > 0.

�
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Proof of Corollary 8. (i) Substituting bt = st into Eq. (B-39) obtains

πt =

(
π1 · (1− αH)bt · (1 + αH)bt

π1 · (1− αH)bt · (1 + αH)bt + (1− π1) · (1− αL)bt · (1 + αL)bt

)
· π1. (B-40)

It follows from (1−αH)bt · (1 +αH)bt < (1−αL)bt · (1 +αL)bt that the first term in Eq. (B-40)

is less than 1, leading to πt < π1.

(ii) Substituting bt = t− 1 and st = 0 into Eq. (B-39) obtains

πt =π1 ·
(
p1 · (1 + αH)t−1 + (1− p1) · (1− αH)t−1

)
·(

π1 ·
(
p1 · (1 + αH)t−1 + (1− p1) · (1− αH)t−1

)
+ (1− π1) ·

(
p1 · (1 + αL)t−1 + (1− p1) · (1− αL)t−1

))−1

.

(B-41)

Then πt > π1 follows from the fact that p1 · (1 + α)t−1 + (1− p1) · (1− α)t−1 is increasing in

α if p1 ≥ 0.5. The proof of the sequence of sell orders follows similarly.

�

Proof of Corollary 9. (i) For the sequence of buy orders, iterating from the first buy order at

t = 1, Eq. (B-36) leads to

pt
1− pt

=

(
p1

1− p1

)
· (δb1)D1 · ... · (δbt−1)Dt−1 =

(
p1

1− p1

)
·
τ=t−1∏
τ=1

δbτ (B-42)

Substituting p1 = 0.5 into Eq. (B-42) and solving for pt obtains

pt =

∏t−1
i=1 δ

b
i

1 +
∏t−1

i=1 δ
b
i

. (B-43)

Let δ̄bt denote the geometric mean of the informativeness of the buy sequence up to time t. It

follows from Nt = t− 1 that for the sequence of buy orders,

τ=t−1∏
τ=1

δbτ =

(( τ=t−1∏
τ=1

δbτ
) 1
t−1

)Nt
= (δ̄bt )

Nt , (B-44)

leading to

pt =
(δ̄bt )

Nt

1 + (δ̄bt )
Nt
, (B-45)

similar to the benchmark model. (ii) The proof of the sell sequence follows similarly.

�
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Proof of Proposition 10. (i) Given that initially it is equally likely that V̂ is high or low (i.e.,

p1 = 0.5), S1 is given by

S1 =
δ1 − 1

δ1 + 1
, (B-46)

where

δ1 = δs1 = δb1 =
1 + (π1 · αH + (1− π1) · αL)

1− (π1 · αH + (1− π1) · αL)
(B-47)

is the initial informativeness of orders. Combining the spread in the presence of composition

uncertainty at time t in Eq. (B-33) and the initial spread in Eq. (B-46) obtains

Sα,t = S1 +
pt · (1− pt) · (δst − (δbt )

−1) · (δ1 + 1)−
(
pt + δst · (1− pt)

)
·
(
pt + (δbt )

−1 · (1− pt)
)
· (δ1 − 1)(

pt + δst · (1− pt)
)
·
(
pt + (δbt )

−1 · (1− pt)
)
· (δ1 + 1)

,

(B-48)

where the second term in Eq. (B-48) shows the net liquidity distortion ∆St relative to the initial

spread and is stabilizing when ∆St < 0 and destabilizing when ∆St > 0.

(ii) The market maker’s perceived informativeness of orders following balanced order flow (i.e.,

bt = st) follows from inserting the conditional probabilities of states into Eqs. (B-29) and (B-

30) as

δst = δbt =
π1 · (1 + αH)st+1 · (1− αH)st + (1− πt) · (1 + αL)st+1 · (1− αL)st

π1 · (1 + αH)st · (1− αH)st+1 + (1− π1) · (1 + αL)st · (1− αL)st+1
. (B-49)

Since pt = p1 for balanced order flow, ∆St in Eq. (B-48) reduces to

∆St =
(δst − (δst )

−1) · (δ1 + 1)− (1 + δst ) · (1 + (δst )
−1) · (δ1 − 1)

(1 + δst ) · (1 + (δst )
−1) · (δ1 + 1)

, (B-50)

which takes a negative value if and only if δst < δ1. Since δst given in Eq. (B-49) is decreasing

in st,
∂δst
∂st

< 0, it follows that δst < δ1 is always satisfied, meaning that balanced order flows

always stabilize the market.

(iii) For the sequence of sell orders, substituting

pt =

∏t−1
i=1(δsi )

−1

1 +
∏t−1

i=1(δsi )
−1
. (B-51)

into the net liquidity distortion ∆St in Eq. (B-48) obtains

∆St =

∏t−1
i=1(δsi )

−1 ·
(
δst − (δbt )

−1
)
· (δ1 + 1)−

(∏t−1
i=1(δsi )

−1 + δst
)
·
(∏t−1

i=1(δsi )
−1 + (δbt )

−1
)
· (δ1 − 1)(∏t−1

i=1(δsi )
−1 + δst

)
·
(∏t−1

i=1(δsi )
−1 + (δbt )

−1
)
· (δ1 + 1)

,

(B-52)
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which takes a positive value if and only if

δ1 <
2 · δst +

∏t−1
i=1(δsi )

−1 +
∏t−1

i=1 δ
s
i · δst · (δbt )−1

2 · (δbt )−1 +
∏t−1

i=1(δsi )
−1 +

∏t−1
i=1 δ

s
i · δst · (δbt )−1

. (B-53)

(iv) The proof for the sequence of buy orders follows similarly.

�

Proof of Lemma 11. Inserting the independence conditions of the myopic market maker (i.e.,

Pr(s1|ht) = πmt · pmt , Pr(s2|ht) = πmt · (1 − pmt ), Pr(s3|ht) = (1 − πmt ) · pmt and Pr(s4|ht) =

(1− πmt ) · (1− pmt )) into δbt and δst in Eqs. (B-29) and (B-30) obtains

δmt =
1 + (πmt · αH + (1− πmt ) · αL)

1− (πmt · αH + (1− πmt ) · αL)
, (B-54)

which yields

Bm
α,t =

pmt
pmt + δmt · (1− pmt )

, (B-55)

and

Amα,t =
pmt

pmt + (δmt )−1 · (1− pmt )
. (B-56)

Therefore, as in the benchmark model

pmt+1

1− pmt+1

=
pmt

1− pmt
· (δmt )Dt . (B-57)

Iterating from the first trade t = 1 up to time t obtains

pmt
1− pmt

=

(
p1

1− p1

)
· (δm1 )D1 · ... · (δmt−1)Dt−1 =

(
p1

1− p1

)
·
t−1∏
τ=1

(δmτ )Dτ =
t−1∏
τ=1

(δmτ )Dτ , (B-58)

leading to

pmt =

∏t−1
τ=1(δmτ )Dτ

1 +
∏t−1

τ=1(δmτ )Dτ
. (B-59)

We now show that
∏t−1

τ=1(δmτ )Dτ is given by δ̄N̄tt . Let

ln δ̄mt =
1

t− 1
·
t−1∑
i=1

ln δmi =
1

t− 1
· ln

t−1∏
i=1

δmi = ln

( t−1∏
i=1

δmi

) 1
t−1

, (B-60)
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leading to δ̄mt =

(∏t−1
i=1 δ

m
i

) 1
t−1

. Taking the log of
∏t−1

τ=1(δmτ )Dτ , and multiplying and dividing

with
∑t−1

i=1 ln δmi obtains

ln

( t−1∏
τ=1

(δmτ )Dτ
)

=
t−1∑
τ=1

Dτ · ln δmτ =
t−1∑
i=1

ln δmi ·
t−1∑
τ=1

Dτ ·
ln δmτ∑t−1
i=1 ln δmi

= ln δ̄mt ·
t−1∑
τ=1

Dτ ·
(t− 1) · ln δmτ∑t−1

i=1 ln δmi
= ln δ̄mt ·

t−1∑
τ=1

Dτ · wτ = ln δ̄mt · N̄t,

(B-61)

where wτ = (t−1)·ln δmτ∑t−1
i=1 ln δmi

and N̄t =
∑t−1

τ=1 Dτ · wτ . Hence,
∏τ=t−1

τ=1 (δmτ )Dτ = δ̄N̄tt .

Lastly, the myopic market maker’s learning about the proportion of informed traders after a

buy and a sell follows from Bayes’ theorem respectively as

πmt+1 = Pr{α̂ = αH |ht, Dt = +1} =
Pr{Dt = +1|ht, α̂ = αH} · Pr{α̂ = αH |ht}

Pr{Dt = +1|ht}

=
1 + αH · (2 · pmt − 1) · (2 · q − 1)

1 +
(
πmt · αH + (1− πmt ) · αL

)
· (2 · pmt − 1) · (2 · q − 1)

· πmt ,
(B-62)

πmt+1 = Pr{α̂ = αH |ht, Dt = −1} =
Pr{Dt = −1|ht, α̂ = αH} · Pr{α̂ = αH |ht}

Pr{Dt = −1|ht}

=
1 + αH · (1− 2 · pmt ) · (2 · q − 1)

1 +
(
πmt · αH + (1− πmt ) · αL

)
· (1− 2 · pmt ) · (2 · q − 1)

· πmt ,
(B-63)

which combined leads to Eq. (47).

�
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