Journal
of

Hydrology

Journal of Hydrology 259 (2002) 254-271
www_elsevier.com/locate/jhydrol

Power of the Mann—Kendall and Spearman’s rho tests for detecting
monotonic trends in hydrological series

Sheng Yue™™*, Paul Pilon®, George Cavadias®

*Meteorological Service of Canada—Ontario Region, Environment Canada, 867 Lakeshore Road, P.O. Box 5050, Burlington,
Ont., Canada L7R 4A6
D61, 1321 Sherbrooke West, Montreal, Que., Canada H3G 1J4

Received 24 July 2001; revised 26 November 2001; accepted 28 November 2001

Abstract

In many hydrological studies, two non-parametric rank-based statistical tests, namely the Mann—Kendall test and Spear-
man’s tho test are used for detecting monotonic trends in time series data. However, the power of these tests has not been well
documented. This study investigates the power of the tests by Monte Carlo simulation. Simulation results indicate that their
power depends on the pre-assigned significance level, magnitude of trend, sample size, and the amount of variation within a
time series. That is, the bigger the absolute magnitude of trend, the more powerful are the tests; as the sample size increases, the
tests become more powerful; and as the amount of variation increases within a time series, the power of the tests decrease.
When a trend is present, the power is also dependent on the distribution type and skewness of the time series. The simulation
results also demonstrate that these two tests have similar power in detecting a trend, to the point of being indistinguishable in
practice.

The two tests are implemented to assess the significance of trends in annual maximum daily streamflow data of 20 pristine
basins in Ontario, Canada. Results indicate that the P-values computed by these different tests are almost identical. By the
binomial distribution, the field significant downward trend was assessed at the significance level of 0.05. Results indicate that a
higher number of sites show evidence of decreasing trends than one might expect due to chance alone. © 2002 Elsevier Science
B.V. All rights reserved.
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1. Introduction statistical tests, the non-parametric tests are thought

to be more suitable for non-normally distributed data

The rank-based non-parametric Mann—Kendall
(MK) statistical test (Mann, 1945; Kendall, 1975)
has been commonly used to assess the significance
of trends in hydro-meteorological time series such
as water quality, streamflow, temperature, and preci-
pitation. The main reason for using non-parametric
statistical tests is that compared with parametric
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and censored data, which are frequently encountered
in hydro-meteorological time series. The serial inde-
pendence of a time series is still required in non-
parametric tests. Examples of use of the MK test for
detecting trend in hydrological and hydro-meteorolo-
gical time series include the works by Steele et al.
(1974), Hirsch et al. (1982), Hirsch and Slack
(1984), Crawford et al. (1983), van Belle and Hughes
(1984), Cailas et al. (1986), Hipel et al. (1988), Taylor
and Loftis (1989), Demaree and Nicolis (1990), Gan
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Fig. 1. (a) Schematic illustration of the confidence interval, critical regions, and Type I error for the two-tailed test; and (b) schematic

illustration of the Type II error and the power of the test.

(1998), Zetterqvist (1991), Mcleod et al. (1991),
Chiew and McMahon (1993), Yu et al. (1993),
Lettenmaier et al. (1994), Burn (1994), Yulianti and
Burn (1998), Lins and Slack (1999), Douglas et al.
(2000), Zhang et al. (2000, 2001), Yue et al. (2002),
and others. Although this test is widely used, a rather
incomplete picture of the power of the MK test for the
detection of trend under various circumstances is the
current state of the art.

The Spearman’s rho (SR) test is another rank-based
non-parametric statistical test that can also be used to
detect monotonic trend in a time series (Lehmann,
1975; Sneyers, 1990). However, since the appearance
of the paper of Hirsch et al. (1982), the MK test has
been popularly used to assess the significance of
trends in hydro-meteorological time series. For what-
ever reason, the SR test is seldom used in hydro-
meteorological trend analysis. Limited examples
using the SR test include the works by Lettenmaier
(1976), El-Shaarawi et al. (1983), Pilon et al. (1985),
McLeod et al. (1991), and Hipel and McLeod (1994).
This disproportionate number of applications between
the two approaches may lead to an impression that the
MK test is superior to the SR test on detection of trend
in hydro-meteorological time series.

The objectives of this study are (i) to document
the ability of both the MK test and the SR test to

detect trend, as well as the influence of sample sizes
and sample variations on the power of the tests; (ii)
to explore the sensitivity of the power to the distri-
bution type of sample data; (iii) to compare the
power of the MK and SR tests; and (iv) to discuss
the difference between statistical significance and
practical significance. Both tests are also applied
to test for trends in the serially independent annual
maximum daily flow data of 20 pristine river basins
in Ontario, Canada.

2. Power computation

The significance level, or a Type I error, «, is the
probability of rejecting the null hypothesis, when it is
true (see Fig. 1(a)). Significance levels are normally
set quite low at values of 0.01, 0.05 or 0.10. The
smaller the value of «, the more confidence there is
that the null hypothesis is really false when it has been
identified as such. A Type Il error (B) is the probability
of accepting a null hypothesis, when it is false (see
Fig. 1(b)). The power of a test is the probability of
correctly rejecting the null hypothesis, when it is false,
which is equal to 1 — B (see Fig. 1(b)).

When sampling from a population that represents
the case where the null hypothesis is false, the power
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Fig. 2. Power—slope—significance level curve (n = 50 and Cy = 0.5).

can be estimated by

Power = % Q)
N

where N is the total number of simulation experiments
and N, is the number of experiments that fall in the
critical region (see Fig. 1(b)). The statistics of the MK
and SR tests are presented in Appendix A. The critical
regions of the MK statistic (S) can be approximately
given by

S < zapVV(S) or § > 210V V(S) @)

where z,, and z;_,, are, respectively, the /2 and
1 — a/2 quantiles of the standard normal distribution;
and V(S) is the sample variance of the MK statistic S
(see Appendix A). For the SR test, the critical region
can be given by the similar inequalities as in Eq. (2) in
which V(S) is replaced by the variance, V(D), of the
SR statistic D (see Appendix A).

3. Power of the MK test for detecting trend

Monte Carlo simulation is conducted to observe the
power of the MK test. The experiment generates 2000
independent normally distributed time series (R;) for

each sample size n =10 (10) 100 with the mean
E(R,) = 1.0 and different variance V(R,) = (0.1 X i)2
where i=1 (1) 10. The corresponding standard
deviations (SD(R,)) and coefficients of variation
(Cy = SD(R,)/E(R))) are 0.1 (0.1) 1.0. Some selected
particular linear trend scenarios (7, = bt, b = —0.01
(0.002) 0.01, = 10,1,2,...,n) are superimposed onto
each of the generated series.

The relationship among power, significance level,
and the magnitude or the slope of trend for the sample
size n = 50 and coefficient of variation Cy = 0.5 is
summarized in Fig. 2. Similar patterns emerge for
other sample sizes. The sample size of 50 is chosen
simply for illustrative purposes. For a fixed significance
level a = 0.002, 0.005, 0.01, 0.025 (0.025) 0.20, the
power of a test is an increasing function of the absolute
slope of trend. For a fixed slope of the trend, increasing
the significance level also increases the power.

Fig. 3 depicts the relationship among power, slope
of trend, and sample size for the given significance
level of 0.05 and coefficient of variation Cy = 0.5.
The power of the test is an increasing function of
both the absolute slope and the sample size. In other
words, as the sample size increases, the power of the
test increases leading to an increased ability to discern
the existence of trend.
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Fig. 3. Power—slope—sample size curve (a = 0.05 and Cy = 0.5).

The relationship between the power, slope, and test is a decreasing function of the coefficient of
coefficient of variation with sample size of 50 and variation of a time series. That is, as the amount
significance level of 0.05 are illustrated in Fig. 4. of variation within a time series increases, the
It is evident that for a fixed slope, the power of a power of the test decreases, implying it is more
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Fig. 4. Power—coefficient of variation—slope curve (a = 0.05 and n = 50).
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Fig. 5. Power—coefficient of variation—sample size curve (a = 0.05 and b = 0.005).

difficult to detect the existence of trend. In
essence, variation within a series masks the exis-
tence of trend. Similarly, Fig. 5 displays the
relationship among the power, sample size, and

coefficient of variation for the trend b = 0.005
and a significance level of 0.05.

From this analysis, it is possible to establish the
minimum required sample size in order to detect a
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Fig. 7. Power—slope curve of P3-distributed series with different positive skewness (7y).

pre-specified population trend at a pre-assigned
significance level. This analysis may also serve
to provide information for hydro-meteorological
observation network design, wherein one purpose
of a network is to monitor potential gradual
changes that may be due to growing concentration
of greenhouse gases (Slack and Landwehr, 1992;
Environment Canada, 1998).

4. Power of the MK test for detecting trend in non-
normally distributed series

In Section 3, the power of the MK test was illu-
strated on the basis that the generated series are
normally distributed. However, hydro-meteorological
time series tend to be skewed and seldom follow the
normal distribution. This section further examines the
ability of the MK test to detect a trend in non-
normally distributed time series. A few commonly
used distribution types in hydrology, namely the
extreme value distribution (EV1, EV2, and EV3),
the Pearson type 3 distribution (P3), and the lognor-
mal distribution types are employed to examine the
power of the test. For the generation of series with

these distribution types, the reader is referred to the
work of Stedinger et al. (1993).

Similar to Section 3, 2000 time series with sample
size of 50, mean of 1.0 and standard deviation of 0.5,
and with each of the above selected distribution types
were generated. The power-slope curves with differ-
ent distribution types are displayed in Fig. 6. In the
case of no trend, the power of the test remains the
same for different distribution types and is equal to
the pre-assigned significance level of 0.05. This indi-
cates that the null distribution of the MK test statistic
is not sensitive to the distribution type of time series.
However, in the case when some trend exists, the
power of the test is dramatically different for different
distribution types. This is not due to smaller sample
size and/or smaller number of simulated samples. The
EV3 has the highest power while the lognormal distri-
bution has the lowest power. This finding indicates
that when a trend does exist, the power of the MK
test is also dependent on the distribution type, which
is in contrast to the common thought that the MK test
is rank-based and would be distribution-free.

To illustrate that the power of the test is also depen-
dent on the shape parameter of the probability distri-
butions that sample data follow, the power of the test
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Fig. 8. Power—slope curve of EV3-distributed series with different shape parameter ().

for P3 distributed time series with positive skewness
is shown in Fig. 7 and for EV3-distributed series in
Fig. 8. Figs. 7 and 8 demonstrate that the power of the
test is also influenced by the shape parameter of a
distribution. This point has also been observed by
Kingman and Gary (1994) and Levy and McCuen
(2000).

The increase/decrease in power as described
earlier, could impact on the overall interpretation of
the significance of results of a number of sites, termed
field significance (Livezey and Chen, 1983). This
would particularly be the case when one is making
inferences for various variables within the hydrologi-
cal cycle in the evaluation of the significance of trend
in, for example, trend-detection studies (Lettenmaier
et al.,, 1994; Zhang et al., 2001). Even though two
series such as precipitation and streamflow might
possess similar trend components, the ability of the
test statistic to discern the presence of trend will be
impacted upon by the site’s statistical properties such
as skewness. These properties will vary depending on
the variable being analyzed. This makes a comparison
of the trend patterns for the various variables more
complex than one might have expected. These proper-
ties would also have an impact on the overall assess-

ment of field significance given that it reflects the
individual site’s significance. Let us look to a
hypothetical example to illustrate these points. Two
networks with 100 sites each have the same magni-
tude of trend (b = 0.005). If the sites of the first
network were normally distributed, while the second
were P3-distributed (y = 1.9), then we would expect
approximately a doubling in the detection rate based
on the results shown in Fig. 7. Such an increase in the
detection rate could impact upon the conclusion
regarding evidence of trend. In essence, the power
of the test is dramatically affected by the site’s char-
acteristics when the trend exists.

5. Comparison of the power of the MK and SR tests

The MK and SR non-parametric tests have been
compared by other authors (e.g. Daniel, 1978).
These studies have found that very little basis usually
exists for choosing one over the other. However,
Daniel (1978) mentioned a few points of interest
when comparing the MK and SR test statistics. He
noted that the distribution of S approaches normality
more rapidly than does D; and S provides an unbiased
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Fig. 9. Comparison of the power of the MK test and the Spearman’s rho test for different slopes of series with & = 0.05 and Cy = 0.5: (a)
n =50 and (b) n = 100.
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estimate of the population parameter, while D does
not, and therefore, S is more interpretable.

Following the same procedure as in the preceding
sections, the relationships among the power, slope,
sample size, and coefficient of variation for the SR
test were also examined. Very similar results for the
two approaches were obtained and for the sake of
brevity, the results are not reported in the paper.

A comparison of the power of the two tests was
performed and is presented herein. For normally
distributed random variables, the power-slope rela-
tionships with Cy = 0.5 and a = 0.05 for sample
size n =50 and 100 are displayed in Fig. 9(a) and
(b), respectively. The power—Cy relationship with
b=10.005 and a=0.05 for n =150 and 100 are
depicted in Fig. 10(a) and (b), respectively. Fig. 11
shows the power of the two tests for various sample
sizes for Cy = 0.5, b = 0.005, o = 0.05. It can be
seen that both tests have almost the same power for
detecting the designed linear trend.

For non-normally distributed time series, the power
of the two tests for the P3 distribution with a skew
coefficient of 1.5 for sample sizes of 50 and 100 is
illustrated in Fig. 12(a) and (b). This was also
performed for a negative skewness of 1.5 with results
being very similar to that shown in Fig. 12. The

comparison of the power of the two tests for the
other distribution types was also made. Results
indicate that these two tests also have similar
power for detecting trend in highly skewed time
series. The power of the two tests with other
sample sizes was also observed and is similar to
that shown in Fig. 11.

6. Case study

This section applies both tests to assess the signifi-
cance of trend in annual maximum daily streamflow
data of 20 pristine river basins, located in Ontario,
Canada. Daily average flow data of these basins are
recorded in HYDAT CD-ROM by Environment
Canada (1999). The drainage area, record length,
mean, coefficient of variation, coefficient of skewness,
and coefficient of kurtosis of annual maximum stream-
flows for these basins are presented in columns (3)—(8)
of Table 1, respectively. The spatial distribution of the
stations is illustrated in Fig. 13, in which the stations
are identified by their numbers. For a normally distrib-
uted random series, its skewness and kurtosis should
be equal to 0 and 3, respectively. It is evident from
Table 1 that the data are positively skewed and are in
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Fig. 13. Spatial distributions of 20 streamflow stations of pristine river basins of Ontario, Canada.

all likelihood poorly described by a normal distribu-
tion.

The lag-1 serial correlation coefficient (r;) and its
upper and lower limits of the confidence interval at
the significance level of 0.10 of the two-tailed test
for the annual maximum daily streamflows are
presented in columns (9)—(11) of Table 1, respec-
tively (see Anderson, 1942; Yevjevich, 1972; Salas
et al., 1980). It can be seen that all the annual
maximum flow series are not significantly serially
correlated at the significance level of 0.10. Hence
the MK and SR tests can be executed without need
of correction for the effect of serial dependence on
the tests (von Storch, 1995).

The magnitude of the slope was estimated using the
approach by Theil (1950) and Sen (1968) (Appendix B),
which is provided in column (12) of Table 1. This slope
divided by the mean of the annual maximum daily flows
is presented in column (13), which is termed a unit slope.
The P-values by Eq. (A10) for the MK test are presented
in columns (14), which are also presented in parentheses
in Fig. 13. Among these 20 stations, four demonstrated a
significant downward trend while only one station
(station 12) shows a positive trend at the significance
level of 0.05. The percentage of sites displaying

evidence of a significant downward trend is 20%,
which is much higher than one might expect at the
pre-selected level of significance (5%).

The mean cross-correlation of the cross-correlation
coefficients among the 20 streamflow observation
sites is 0.14, which implies that the cross-
correlation among the sites could be ignored.
Thus, the application of the binomial probability
distribution to assess the field significance of trend
would be appropriate (Livezey and Chen, 1983) as
the binomial distribution for assessing the field
significance of trend requires that there is no
cross-correlation among the sites in a region. The
probability being or exceeding four sites showing
downward trend by chance at a significance level
of 0.05 is 1.6% by the binomial distribution (see
Appendix C). Thus, there is some evidence that the
downward trends may not be due to chance alone. In
other words, annual maximum daily flow in Ontario
region might be experiencing a downward trend,
without considering the influence of cross-correla-
tion on the test results.

The SR test was also executed to detect trends in the
annual maximum daily streamflows. The P-values by
the SR test are presented in column (15) of Table 1. The
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P-values for the SR test are almost identical to those of
the MK test. This case study shows the high similarity of
results when both tests are applied, which was
confirmed earlier through the simulation experiments.

7. Statistical significance versus practical
significance

Daniel (1978) has discussed the difference between
statistical significance and practical significance. He
noted that a statistically significant trend may not be
practically significant and vice versa. Sufficiently
large samples will reveal any change, no matter how
small, through the use of a statistical test, but this may
not be of any practical help. Likewise, small samples
may fail to detect a change statistically, but the degree
of change might be of practical significance.

In our study case, although 13 of the 20 stations
have negative slopes, only stations 1, 3, 11, and 14
have ‘statistically’ significant downward trends (P-
values = 0.05) by the MK test. The slope of station
2 is not statistically significant yet its slope is greater
than that of station 1. This difference in P-value is
attributable to the longer record length for station 1.
Similarly, of the seven stations having positive slopes,
only station 12 was assessed to be statistically signifi-
cant at the significance level of 0.05. Station 15 has a
slope much larger than that of station 12, but the trend
of station 15 is not statistically significant.

Fig. 14 shows four plots containing annual maximum
daily streamflow versus year of occurrence for some
selected sites listed in Table 1, which are used to assist
in exploring the importance of statistical versus practi-
cal significance. Fig. 14(a)—(d) represents the stream-
flows at site 6 (02EC002—Black River near Washago),
site 12 (02KB001—Petawawa River near Petawawa),
site 1 (02AA001—Pigeon River at Middle Falls), and
site 15 (04GA002—Cat River below Wesleyan Lake),
respectively. Site 6 has a P-value of 0.32 and a unit slope
of 0.0048. A visual inspection of Fig. 14(a) shows little
evidence of trend in the data. Over a 50-year period, the
slope yields an increase in the mean flow of 130 m*/s by
approximately 3.1 m*s or 2.4%. From a practical
perspective, the estimated change is within the sampling
error for the streamflow measurements and does not
appear, given the available data, as being of practical
importance.

As a further example, Fig. 14(b) and (c) show

evidence of an increasing trend at sites 12 and a
decreasing trend at site 1, respectively. The linear
trend also appears to be a reasonable estimate of the
gradual tendency. Both tendencies have been assessed
to be statistically significant (Table 1). Over a 50-year
period, the estimated slope for site 12 results in an
increase of 57.6 m*/s or 26% in the mean of 220 m*/
s. In comparison, site 1 shows a decrease of 20.7 m*/s
or 17% of the mean of 125 m¥/s. The tendency esti-
mated for both these basins is quite dramatic and are
of practical significance.

The trend in the data of site 15 is not statistically
significant (Table 1). Should the slope depicted in Fig.
14(d) be accurate, it could be inferred that the data are
displaying a slope of practical importance. Over a 50-
year period, the estimated slope results in an increase
of 52.7m%s or 61% in the mean of 87.0 m%/s. The
increasing tendency for this basin is quite dramatic
and is of practical significance. However, caution
should be advocated in this case particularly due to
the lack of statistical evidence to support the alterna-
tive hypothesis of trend.

It must be noted that the ultimate purpose of a
test for trend is to provide information to the
engineer in charge of the water resources project
on the current attributes of the streamflow (e.g.
annual minimum and maximum, mean). However,
even if the test indicates a significant trend with a
slope of practical importance, the engineer is justi-
fied in changing his assumption concerning the
magnitude of the flow characteristic only if this
change is permanent for the life of the project.
To ascertain this, it is necessary to complement
the detection test with an attribution study, i.e.
to determine the nature of the changes in the
input variables of the basin system (temperature,
precipitation, basin characteristics, etc.) that result
in streamflow trends. It is also necessary to estab-
lish if the nature of these changes is likely to
persist over the design life of the project. Only
after the attribution study can the engineer say
whether the statistically significant test is also of
practical significance.

8. Conclusions

This study investigated the power of the MK
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test and SR test for assessing the significance of
trend in hydrological series. The simulation
experiments have demonstrated that the power
of these tests is an increasing function of the
slope of trend, sample size, and pre-assigned
significance level; while it is a decreasing func-
tion of the variation of the time series. The
power of these tests is also dependent on the
distribution type and its shape parameter that
time series have, should a trend exist. Such
increases/decreases in power may inadvertently
affect the interpretation of field significance
when comparing variables that have different
statistical properties. This information provides
practitioners with a better picture of the power
of these tests for detecting trends, given that
their power varies with certain distribution type,
sample size, sample variation, as well as sample
skewness. SR test provided results almost identi-
cal to those obtained for the MK test.

Both tests were also applied to annual maximum
flow data for 20 sites of pristine river basins in
Ontario, Canada. Of the 20 sites, four demonstrated
significant downward trend while one demonstrated
significant upward trend. The binomial distribution
was used to assess the field significance of downward
trend. The results indicate that the evidence of a
downward trend in the annual maximum daily stream-
flows for Ontario streams is stronger than what one
would expect due to chance alone.

The statistical and practical significance of the
results was also discussed and analyzed for the
Ontario streamflow data, given that statistically
significant trend does not necessarily imply trend
of practical significance and vice versa. Overall, it
was found that in this case study, practical and
statistical significance was in agreement. Given
the short record lengths and highly variable nature
of the data, caution is advised to those who might
consider use of practical aspects without statistical
consideration. Physical attribution of the factors
forcing the trend in streamflow must be ascer-
tained as well as their potential future states
prior to establishing whether statistically signifi-
cant test results are of practical utility in
engineering design. It is suggested that both statis-
tical and practical significance of trend be consid-
ered in an overall analysis of trend.
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Appendix A
A.l. Mann—Kendall test

The MK test is based on the test statistic S defined
as follows:

n—1 n

S=> > sgnly—x) (A1)

i=1 j=i+1

where the x; are the sequential data values, n is the

length of the data set, and

1 if6>0
sen@=1 0 if6=0 (A2)
—1 ifo<0

Mann (1945) and Kendall (1975) have documented
that when n = 8§, the statistic S is approximately
normally distributed with the mean and the variance
as follows:

ES)=0 (A3)

nin —1)2n +5) — itii(i - 12 +5)
V(S) = i=1

18
(Ad4)

where f; is the number of ties of extent i. The
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standardized test statistic Z is computed by

S—1
—— §>0
JVar(S)
Zyk = 0 S=0 (A5)
S+1
— §<0
JVar(S)

The standardized MK statistic Z follows the standard
normal distribution with mean of zero and variance of
one.

A.2. Spearman’s rho test

SR test is another non-parametric rank-order test.
Given a sample data set {X;,i = 1,2,...,n}, the null
hypothesis H;, of the SR test against trend tests is that
all the X; are independent and identically distributed;
the alternative hypothesis is that X; increases or
decreases with i, that is, trend exists. The test statistic
is given by (Sneyers, 1990)

6> [RX;) — il
i=1

where R(X;) is the rank of ith observation X; in the
sample of size n.

Under the null hypothesis, the distribution of D is
asymptotically normal with the mean and variance as
follows (Lehmann, 1975; Sneyers, 1990)

EMD)=0 (A7)

V(D)= (A8)
n—1

The P-value of the SR statistic (d) of the observed
sample data is estimated using the normal cumulative
distribution function (CDF) as its statistics are
approximately normally distributed with mean of
zero and variance of V(D) for the SR statistic. Using
the following standardization,

D
Zsg = VD)

the standardized statistic Z follows the standard
normal distribution Z ~ N(0, 1).

(A9)

The P-value (probability value, p) of both the MK
statistic (S) and the SP statistic (D) of sample data can
be estimated using the normal CDF,

p=05— N(Z)) (Z = Zyk, Zsp)

1 4 12
W(z)) = ﬁjo e "7 g

If the P-value is small enough, the trend is quite
unlikely to be caused by random sampling. At the
significance level of 0.05, if p = 0.05, then the exist-
ing trend is considered to be statistically significant.

(A10)

Appendix B

The magnitude of the slope of trend is estimated
using the approach by Theil (1950) and Sen (1968).
The slope is estimated by

xj—xl

b= Median( ) Vi<j (B1)

where b is the estimate of the slope of trend and x; is
the /th observation. The slope determined by Eq. (C1)
is a robust estimate of the magnitude of monotonic
trend.

Appendix C
The binomial distribution is

!
P(k) = kn”i;k)!p"(l —pr (el

I(

where P(k) is the probability of k occurrences in n

trials, and p is a certain probability associated with

each occurrence. The probability of k& or more

occurrences being an anomaly or accidental result is
k=1

Plxz=k)y=1- > Pk (C2)
i=0
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